Articles | Volume 68, issue 1
https://doi.org/10.5194/aab-68-223-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-68-223-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microalgae supplementation improves goat milk composition and fatty acid profile: a meta-analysis and meta-regression
Soumaya Boukrouh
CORRESPONDING AUTHOR
African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
Ihssane Mnaouer
African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
Poliana Mendes de Souza
African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
Jean-Luc Hornick
Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
Abdelaziz Nilahyane
African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
Bouchra El Amiri
African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Rabat 10090, Morocco
Abdelaziz Hirich
African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
Related authors
Soumaya Boukrouh, Fadoua Karouach, Soufiane El Aayadi, Bouchra El Amiri, Jean-Luc Hornick, Abdelaziz Nilahyane, and Abdelaziz Hirich
Arch. Anim. Breed., 69, 101–115, https://doi.org/10.5194/aab-69-101-2026, https://doi.org/10.5194/aab-69-101-2026, 2026
Short summary
Short summary
Microalgae have been explored as protein supplements for dairy cows, but results vary. This study assessed their effects using meta-analysis, considering factors like species, inclusion level, and breed. Microalgae reduced dry matter intake but improved fiber digestibility. Milk fat decreased, yet C18:2 c9t11 and C22:6 n-3 increased. Schizochytrium sp. boosted C22:6 n-3, and Holstein–Friesian cows reduced saturated fatty acids, supporting microalgae as a sustainable feed supplement.
Soumaya Boukrouh, Ali Noutfia, Nassim Moula, Claire Avril, Julien Louvieaux, Jean-Luc Hornick, Jean-François Cabaraux, and Mouad Chentouf
Arch. Anim. Breed., 67, 481–492, https://doi.org/10.5194/aab-67-481-2024, https://doi.org/10.5194/aab-67-481-2024, 2024
Short summary
Short summary
This study assessed the effects of incorporating underutilized bitter vetch and sorghum grains on the performance of local goats. While growth parameters were unaffected, sorghum grains lowered carcass mesenteric fat and increased back lightness. Regarding meat quality, sorghum decreased ash, C18:2 n-6, and polyunsaturated fatty acids (PUFAs), while bitter vetch decreased protein but increased C18:3 n-3. Bitter vetch and sorghum grains can be incorporated into fattening diets for goat kids.
Soumaya Boukrouh, Fadoua Karouach, Soufiane El Aayadi, Bouchra El Amiri, Jean-Luc Hornick, Abdelaziz Nilahyane, and Abdelaziz Hirich
Arch. Anim. Breed., 69, 101–115, https://doi.org/10.5194/aab-69-101-2026, https://doi.org/10.5194/aab-69-101-2026, 2026
Short summary
Short summary
Microalgae have been explored as protein supplements for dairy cows, but results vary. This study assessed their effects using meta-analysis, considering factors like species, inclusion level, and breed. Microalgae reduced dry matter intake but improved fiber digestibility. Milk fat decreased, yet C18:2 c9t11 and C22:6 n-3 increased. Schizochytrium sp. boosted C22:6 n-3, and Holstein–Friesian cows reduced saturated fatty acids, supporting microalgae as a sustainable feed supplement.
Soumaya Boukrouh, Ali Noutfia, Nassim Moula, Claire Avril, Julien Louvieaux, Jean-Luc Hornick, Jean-François Cabaraux, and Mouad Chentouf
Arch. Anim. Breed., 67, 481–492, https://doi.org/10.5194/aab-67-481-2024, https://doi.org/10.5194/aab-67-481-2024, 2024
Short summary
Short summary
This study assessed the effects of incorporating underutilized bitter vetch and sorghum grains on the performance of local goats. While growth parameters were unaffected, sorghum grains lowered carcass mesenteric fat and increased back lightness. Regarding meat quality, sorghum decreased ash, C18:2 n-6, and polyunsaturated fatty acids (PUFAs), while bitter vetch decreased protein but increased C18:3 n-3. Bitter vetch and sorghum grains can be incorporated into fattening diets for goat kids.
Ahmed Sadoudi, Asma Ait-Kaki, Yuva Bellik, Leghel Touazi, Krimou Yahi, Mokrane Iguer-Ouada, Jean-Luc Hornick, and Nassim Moula
Arch. Anim. Breed., 67, 163–176, https://doi.org/10.5194/aab-67-163-2024, https://doi.org/10.5194/aab-67-163-2024, 2024
Short summary
Short summary
The potential of olive leaves was investigated by comparing two rates of dietary incorporations, 3 % and 6 %, of olive leaves into the three commercial feeds corresponding to the three growth phases, during 15 weeks of rearing. This work highlights the interest of using the locally available ingredients in order to reduce the production costs of turkey meat in Algeria and, above all, to reduce the dependence of the poultry industry on imports in general.
Cited articles
Adarme-Vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y., and Schenk, P. M.: Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Fact., 11, 96, https://doi.org/10.1186/1475-2859-11-96, 2012.
Ait El Alia, O., Zine-Eddine, Y., Chaji, S., Boukrouh, S., Boutoial, K., and Faye, B.: Global Camel Milk Industry: A Comprehensive Overview of Production, Consumption Trends, Market Evolution, and Value Chain Efficiency, Small Ruminant Res., 107441, 2025.
Al Rharad, A., El Aayadi, S., Avril, C., Souradjou, A., Sow, F., Camara, Y., Hornick, J.-L., and Boukrouh, S.: Meta-Analysis of Dietary Tannins in Small Ruminant Diets: Effects on Growth Performance, Serum Metabolites, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Fatty Acid Profile, Animals, 15, 596, https://doi.org/10.3390/ani15040596, 2025.
Altomonte, I., Salari, F., Licitra, R., and Martini, M.: Use of microalgae in ruminant nutrition and implications on milk quality–A review, Livest. Sci., 214, 25–35, https://doi.org/10.1016/j.livsci.2018.05.006, 2018.
Baumgard, L. H., Sangster, J. K., and Bauman, D. E.: Milk Fat Synthesis in Dairy Cows Is Progressively Reduced by Increasing Supplemental Amounts of trans-10, cis-12 Conjugated Linoleic Acid (CLA), J. Nutr., 131, 1764–1769, https://doi.org/10.1093/jn/131.6.1764, 2001.
Beyzi, S. B. and Dallı, C. Ç.: Changes in the rumen and milk fatty acid profile and milk composition in response to fish and microalgae oils supplementation to diet alone or combination in dairy goats, Trop. Anim. Health Prod., 55, 407, https://doi.org/10.1007/s11250-023-03824-9, 2023.
Bhat, S., Sarkar, S., Zaffar, D., Dandona, P., and Kalyani, R. R.: Omega-3 Fatty Acids in Cardiovascular Disease and Diabetes: A Review of Recent Evidence, Curr. Cardiol. Rep., 25, 51–65, 2023.
Boeckaert, C., Vlaeminck, B., Mestdagh, J., and Fievez, V.: In vitro examination of DHA-edible micro algae: 1. Effect on rumen lipolysis and biohydrogenation of linoleic and linolenic acids, Anim. Feed Sci. Technol., 136, 63–79, https://doi.org/10.1016/j.anifeedsci.2006.08.015, 2007.
Boukrouh, S., Noutfia, A., Moula, N., Avril, C., Hornick, J.-L., Chentouf, M., and Cabaraux, J.-F.: Effects of sulla flexuosa hay as alternative feed resource on goat’s milk production and quality, Animals, 13, 709, https://doi.org/10.3390/ani13040709, 2023a.
Boukrouh, S., Noutfia, A., Moula, N., Avril, C., Louvieaux, J., Hornick, J. L., Chentouf, M., and Cabaraux, J. F.: Ecological, morpho-agronomical, and nutritional characteristics of Sulla flexuosa (L.) Medik. ecotypes, Sci. Rep., 13, 13300, https://doi.org/10.1038/s41598-023-40148-y, 2023b.
Boukrouh, S., Noutfia, A., Moula, N., Avril, C., Louvieaux, J., Hornick, J. L., Cabaraux, J. F., and Chentouf, M.: Ecological, morpho-agronomical, and bromatological assessment of sorghum ecotypes in Northern Morocco, Sci. Rep., 13, 15548, https://doi.org/10.1038/s41598-023-41565-9, 2023c.
Boukrouh, S., Bouazzaoui, Y., El Aich, A., Mahyou, H., Chikhaoui, M., Ait Lafkih, M., N’Dorma, O., and Alados, C. L.: Estimation of standing crop biomass in rangelands of the Middle Atlas mountains using remote sensing data, Afr. J. Range Forage Sci., 41, 1–16, https://doi.org/10.2989/10220119.2024.2360991, 2024a.
Boukrouh, S., Noutfia, A., Moula, N., Avril, C., Louvieaux, J., Hornick, J.-L., Chentouf, M., and Cabaraux, J.-F.: Characterisation of bitter vetch (Vicia ervilia (L.) Willd) ecotypes: An ancient and promising legume, Exp. Agric., 60, e19, 1–18, https://doi.org/10.1017/S0014479724000139, 2024b.
Boukrouh, S., Noutfia, A., Moula, N., Avril, C., Louvieaux, J., Hornick, J.-L., Cabaraux, J.-F., and Chentouf, M.: Growth performance, carcass characteristics, fatty acid profile, and meat quality of male goat kids supplemented by alternative feed resources: bitter vetch and sorghum grains, Arch. Anim. Breed., 67, 481–492, https://doi.org/10.5194/aab-67-481-2024, 2024c.
Christodoulou, C., Kotsampasi, B., Dotas, V., Simoni, M., Righi, F., and Tsiplakou, E.: The effect of Spirulina supplementation in ewes’ oxidative status and milk quality, Anim. Feed Sci. Technol., 295, 115544, https://doi.org/10.1016/j.anifeedsci.2022.115544, 2023.
Coulombier, N., Jauffrais, T., and Lebouvier, N.: Antioxidant Compounds from Microalgae: A Review, Mar. Drugs, 19, 549, https://doi.org/10.3390/md19100549, 2021.
Dewanckele, L., Toral, P. G., Vlaeminck, B., and Fievez, V.: Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update, J. Dairy Sci., 103, 7655–7681, https://doi.org/10.3168/jds.2019-17662, 2020.
Durmic, Z., Moate, P. J., Eckard, R., Revell, D. K., Williams, R., and Vercoe, P. E.: In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation, J. Sci. Food Agric., 94, 1191–1196, https://doi.org/10.1002/jsfa.6396, 2014.
Egger, M., Smith, G. D., Schneider, M., and Minder, C.: Bias in meta-analysis detected by a simple, graphical test, BMJ, 315, 629–634, 1997.
FAOSTAT: Food and Agiculture Organization of the United Nations, https://www.fao.org/faostat/en/#data/QCL (last access: 20 March 2024), 2022.
Ferro, M. M., Tedeschi, L. O., and Atzori, A. S.: The comparison of the lactation and milk yield and composition of selected breeds of sheep and goats, Transl. Anim. Sci., 1, 498–506, https://doi.org/10.2527/tas2017.0056, 2017.
Goetsch, A. L., Zeng, S. S., and Gipson, T. A.: Factors affecting goat milk production and quality, Small Ruminant Res., 101, 55–63, 2011.
Hernández, H., Nunes, M. C., Prista, C., and Raymundo, A.: Innovative and Healthier Dairy Products through the Addition of Microalgae: A Review, Foods, 11, 755, https://doi.org/10.3390/foods11050755, 2022.
Hirich, A., Choukr-Allah, R., and Ragab, R.: Emerging research in alternative crops, Springer, https://doi.org/10.1007/978-3-319-90472-6, 2020.
Hirich, A., Choukr-Allah, R., Ezzaiar, R., Shabbir, S. A., and Lyamani, A.: Introduction of alternative crops as a solution to groundwater and soil salinization in the Laayoune area, South Morocco, EuroMediterr. J. Environ. Integr., 6, 52, 2021.
Holman, B. W. B. and Malau-Aduli, A. E. O.: Spirulina as a livestock supplement and animal feed, J. Anim. Physiol. Anim. Nutr. (Berl.), 97, 615–623, 2013.
Jaseera, K. V. and Kaladharan, P.: Overview of systematics, morphology, biodiversity and potential utilisation of Thraustochytrids, Journal of the Marine Biological Association of India, 62, 13–21, 2020.
Khan, M. I., Shin, J. H., and Kim, J. D.: The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products, Microb. Cell Fact., 17, 36, https://doi.org/10.1186/s12934-018-0879-x, 2018.
Kholif, A. E. and Olafadehan, O. A.: Microalgae in Ruminant Nutrition: a Review of the Chemical Composition and Nutritive Value, Ann. Anim. Sci., 21, 789–806, https://doi.org/10.2478/aoas-2020-0117, 2021.
Kholif, A. E. and Olafadehan, O. A.: Dietary strategies to enrich milk with healthy fatty acids – A review, Ann. Anim. Sci., 22, 523–536, 2022.
Kholif, A. E., Morsy, T. A., Matloup, O. H., Anele, U. Y., Mohamed, A. G., and El-Sayed, A. B.: Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats, J. Agric. Sci., 155, 508–518, https://doi.org/10.1017/S0021859616000824, 2017.
Kholif, A. E., Hamdon, H. A., Kassab, A. Y., Farahat, E. S. A., Azzaz, H. H., Matloup, O. H., Mohamed, A. G., and Anele, U. Y.: Chlorella vulgaris microalgae and/or copper supplementation enhanced feed intake, nutrient digestibility, ruminal fermentation, blood metabolites and lactational performance of Boer goat, J. Anim. Physiol. Anim. Nutr. (Berl), 104, 1595–1605, https://doi.org/10.1111/jpn.13378, 2020a.
Kholif, A. E., Gouda, G. A., and Hamdon, H. A.: Performance and milk composition of Nubian goats as affected by increasing level of Nannochloropsis oculata microalgae, Animals, 10, 2453, https://doi.org/10.3390/ani10122453, 2020b.
Kholif, A. E., Gouda, G. A., Abu Elella, A. A., and Patra, A. K.: Replacing the Concentrate Feed Mixture with Moringa oleifera Leaves Silage and Chlorella vulgaris Microalgae Mixture in Diets of Damascus Goats: Lactation Performance, Nutrient Utilization, and Ruminal Fermentation, Animals, 12, 1589, https://doi.org/10.3390/ani12121589, 2022.
Langan, D.: Assessing heterogeneity in random-effects meta-analysis, Meta-research: methods and protocols, 67–89, 2022.
Lock, A. L. and Garnsworthy, P. C.: Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows, Livest. Prod. Sci., 79, 47–59, https://doi.org/10.1016/S0301-6226(02)00118-5, 2003.
Maltsev, Y. and Maltseva, K.: Fatty acids of microalgae: diversity and applications, Rev. Environ. Sci. Biotechnol., 20, 515–547, https://doi.org/10.1007/s11157-021-09571-3, 2021.
Marques, I. T. O., Vasconcelos, F. R., Alves, J. P. M., Montenegro, A. R., Fernandes, C. C. L., Oliveira, F. B. B., Silva, C. P., Nagano, C. S., Figueiredo, F. C., and Beserra, F. J.: Proteome of milk fat globule membrane and mammary gland tissue in goat fed different lipid supplementation, Small Ruminant Res., 199, 106378, https://doi.org/10.1016/j.smallrumres.2021.106378, 2021.
Martin, C., Coppa, M., Fougère, H., Bougouin, A., Baumont, R., Eugène, M., and Bernard, L.: Diets supplemented with corn oil and wheat starch, marine algae, or hydrogenated palm oil modulate methane emissions similarly in dairy goats and cows, but not feeding behavior, Anim. Feed Sci. Technol., 272, 114783, https://doi.org/10.1016/j.anifeedsci.2020.114783, 2021.
Martins, C. F., Ribeiro, D. M., Costa, M., Coelho, D., Alfaia, C. M., Lordelo, M., Almeida, A. M., Freire, J. P. B., and Prates, J. A. M.: Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat, Foods, 10, 2933, https://doi.org/10.3390/foods10122933, 2021.
Mavrommatis, A. and Tsiplakou, E.: The impact of the dietary supplementation level with Schizochytrium sp. on milk chemical composition and fatty acid profile, of both blood plasma and milk of goats, Small Ruminant Res., 193, 106252, https://doi.org/10.1016/j.smallrumres.2020.106252, 2020.
Mavrommatis, A., Chronopoulou, E. G., Sotirakoglou, K., Labrou, N. E., Zervas, G., and Tsiplakou, E.: The impact of the dietary supplementation level with schizochytrium sp, on the oxidative capacity of both goats' organism and milk, Livest. Sci., 218, 37–43, https://doi.org/10.1016/j.livsci.2018.10.014, 2018.
Mavrommatis, A., Skliros, D., Simoni, M., Righi, F., Flemetakis, E., and Tsiplakou, E.: Alterations in the rumen particle-associated microbiota of goats in response to dietary supplementation levels of Schizochytrium spp., Sustainability, 13, 607, https://doi.org/10.3390/su13020607, 2021.
Moore, S. S., Costa, A., Pozza, M., Vamerali, T., Niero, G., Censi, S., and De Marchi, M.: How animal milk and plant-based alternatives diverge in terms of fatty acid, amino acid, and mineral composition, NPJ Sci. Food, 7, 50, https://doi.org/10.1038/s41538-023-00227-w, 2023.
Morand-Fehr, P., Fedele, V., Decandia, M., and Le Frileux, Y.: Influence of farming and feeding systems on composition and quality of goat and sheep milk, Small Ruminant Res., 68, 20–34, https://doi.org/10.1016/j.smallrumres.2006.09.019, 2007.
Niccolai, A., Chini Zittelli, G., Rodolfi, L., Biondi, N., and Tredici, M. R.: Microalgae of interest as food source: Biochemical composition and digestibility, Algal. Res., 42, 101617, https://doi.org/10.1016/j.algal.2019.101617, 2019.
Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler, F., Hilgard, J., Kline Struhl, M., and Nuijten, M. B.: Replicability, robustness, and reproducibility in psychological science, Annu. Rev. Psychol., 73, 719–748, 2022.
Novotná, K., Fantová, M., Nohejlová, L., Stádník, L., Ducháček, J., and Borková, M.: Effect of Chlorella vulgaris and Japonochytrium sp. microalgae supplementation on composition and fatty acid profile of goat milk, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65, https://doi.org/10.11118/actaun201765051585, 2017.
Oh, Y. K., Eun, J. S., Lee, S. C., Chu, G. M., Lee, S. S., and Moon, Y. H.: Responses of blood glucose, insulin, glucagon, and fatty acids to intraruminal infusion of propionate in Hanwoo, Asian-Australas. J. Anim. Sci., 28, 200, 2015.
Orzuna-orzuna, J. F., Dorantes-iturbide, G., Lara-bueno, A., and Miranda-Romero, L. A.: Growth Performance, Meat Quality and Antioxidant Status of Sheep Supplemented with Tannins: A Meta-Analysis, Animals, 11, 3184, https://doi.org/10.3390/ani11113184, 2021.
Orzuna-Orzuna, J. F., Chay-Canul, A. J., and Lara-Bueno, A.: Performance, milk fatty acid profile and oxidative status of lactating small ruminants supplemented with microalgae: A meta-analysis, Small Ruminant Res., 226, 107031, https://doi.org/10.1016/j.smallrumres.2023.107031, 2023.
Pajor, F., Egerszegi, I., Steiber, O., Bodnár, Á., and Póti, P.: Effect of marine algae supplementation on the fatty acid profile of milk of dairy goats kept indoor and on pasture, https://doi.org/10.22358/jafs/109955/2019, 2019.
Pajor, F., Egerszegi, I., Szűcs, Á., Poti, P., and Bodnár, Á.: Effect of marine algae supplementation on somatic cell count, prevalence of udder pathogens, and fatty acid profile of dairy goats’ milk, Animals, 11, 1097, https://doi.org/10.3390/ani11041097, 2021.
Pantami, H. A., Ahamad Bustamam, M. S., Nakakuni, M., Shaari, K., Lee, S. Y., Mohd Faudzi, S. M., and Ismail, I. S.: Comprehensive GCMS and LC-MS/MS Metabolite Profiling of Chlorella vulgaris, Mar. Drugs, 18, 367, https://doi.org/10.3390/md18070367, 2020.
Półbrat, T., Konkol, D., and Korczyński, M.: Optimization of docosahexaenoic acid production by Schizochytrium SP. – A review, Biocatal. Agric. Biotechnol., 35, 102076, https://doi.org/10.1016/j.bcab.2021.102076, 2021.
Póti, P., Pajor, F., Bodnár, Á., Penksza, K., and Köles, P.: Effect of micro-alga supplementation on goat and cow milk fatty acid composition, Chil. J. Agric. Res., 75, 259–263, https://doi.org/10.4067/S0718-58392015000200017, 2015.
Riley, R. D., Higgins, J. P. T., and Deeks, J. J.: Interpretation of random effects meta-analyses, BMJ, 342, d549, https://doi.org/10.1136/bmj.d549, 2011.
Sakadevan, K. and Nguyen, M.-L.: Chapter Four – Livestock Production and Its Impact on Nutrient Pollution and Greenhouse Gas Emissions, in: Advances in Agronomy, edited by: Sparks, D. L., Academic Press, 147–184, https://doi.org/10.1016/bs.agron.2016.10.002, 2017.
Schiavenato, M. and Chu, F.: PICO: What it is and what it is not, Nurse Educ. Pract., 56, 103194, https://doi.org/10.1016/j.nepr.2021.103194, 2021.
Shamay, A., Mabjeesh, S. J., Shapiro, F., and Silanikove, N.: Adrenocorticotrophic hormone and dexamethasone failed to affect milk yield in dairy goats: comparative aspects, Small Ruminant Res., 38, 255–259, https://doi.org/10.1016/S09214488(00)00152-8, 2000.
Shi, P. J., Meng, K., Zhou, Z. G., Wang, Y. R., Diao, Q. Y., and Yao, B.: The host species affects the microbial community in the goat rumen, Lett. Appl. Microbiol., 46, 132–135, 2008.
Smith, N. W., Fletcher, A. J., Hill, J. P., and McNabb, W. C.: Modeling the contribution of milk to global nutrition, Front. Nutr., 8, 716100, https://doi.org/10.3389/fnut.2021.716100, 2022.
Sofyan, A., Irawan, A., Herdian, H., Jasmadi, Harahap, M. A., Sakti, A. A., Suryani, A. E., Novianty, H., Kurniawan, T., Darma, I. N. G., Windarsih, A., and Jayanegara, A.: Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments, Anim. Feed Sci. Technol., 294, 115503, https://doi.org/10.1016/j.anifeedsci.2022.115503, 2022.
Tsiplakou, E., Abdullah, M. A. M., Alexandros, M., Chatzikonstantinou, M., Skliros, D., Sotirakoglou, K., Flemetakis, E., Labrou, N. E., and Zervas, G.: The effect of dietary Chlorella pyrenoidosa inclusion on goats milk chemical composition, fatty acids profile and enzymes activities related to oxidation, Livest. Sci., 197, 106–111, https://doi.org/10.1016/j.livsci.2017.01.014, 2017.
Tsiplakou, E., Abdullah, M. A. M., Mavrommatis, A., Chatzikonstantinou, M., Skliros, D., Sotirakoglou, K., Flemetakis, E., Labrou, N. E., and Zervas, G.: The effect of dietary Chlorella vulgaris inclusion on goat's milk chemical composition, fatty acids profile and enzymes activities related to oxidation, J. Anim. Physiol. Anim. Nutr. (Berl.), 102, 142–151, https://doi.org/10.1111/jpn.12671, 2018.
Van Durme, J., Goiris, K., De Winne, A., De Cooman, L., and Muylaert, K.: Evaluation of the Volatile Composition and Sensory Properties of Five Species of Microalgae, J. Agric. Food Chem., 61, 10881–10890, https://doi.org/10.1021/jf403112k, 2013.
Viechtbauer, W.: Conducting meta-analyses in R with the metafor package, J. Stat. Softw., 36, 1–48, 2010.
Vignaud, J., Loiseau, C., Hérault, J., Mayer, C., Côme, M., Martin, I., and Ulmann, L.: Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress, Antioxidants, 12, 1050, https://doi.org/10.3390/antiox12051050, 2023.
Wang, K., Xiong, B., and Zhao, X.: Could propionate formation be used to reduce enteric methane emission in ruminants?, Sci. Total Environ., 855, 158867, https://doi.org/10.1016/j.scitotenv.2022.158867, 2023.
Xue, Y., Yang, Y., and Huang, T.: Effects of chronic exercise inter ventions on executive function among children and adolescents: a systematic review with meta-analysis, Br. J. Sports Med., 0, 1–9, https://doi.org/10.1136/bjsports-2018-099825, 2019.
Yagi, S., Fukuda, D., Aihara, K., Akaike, M., Shimabukuro, M., and Sata, M.: n-3 polyunsaturated fatty acids: promising nutrients for preventing cardiovascular disease, J. Atheroscler. Thromb., 24, 999–1010, 2017.
Zhu, H., Wang, X., Zhang, W., Zhang, Y., Zhang, S., Pang, X., Lu, J., and Lv, J.: Dietary Schizochytrium Microalgae Affect the Fatty Acid Profile of Goat Milk: Quantification of Docosahex aenoic Acid (DHA) and Its Distribution at Sn-2 Position, Foods, 11, 2087, https://doi.org/10.3390/foods11142087, 2022.
Short summary
This study explored the benefits of adding microalgae to goat diets. Our analysis, based on data from multiple studies, demonstrated that microalgae enrich goat milk by increasing its protein, fat, and beneficial fatty acid contents. Besides offering healthier dairy products for consumers, our meta-analysis confirms that microalgae can be a sustainable and eco-friendly supplement to traditional feeds.
This study explored the benefits of adding microalgae to goat diets. Our analysis, based on data...