Articles | Volume 65, issue 4
https://doi.org/10.5194/aab-65-371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-65-371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Immune mechanisms, resistance genes, and their roles in the prevention of mastitis in dairy cows
Monika Zemanova
Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1, Brno, Czech Republic
Lucie Langova
Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1, Brno, Czech Republic
Ivana Novotná
Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1, Brno, Czech Republic
Petra Dvorakova
Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1, Brno, Czech Republic
Irena Vrtkova
Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1, Brno, Czech Republic
Zdenek Havlicek
CORRESPONDING AUTHOR
Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1, Brno, Czech Republic
Related authors
No articles found.
Michaela Kulišťáková, Iva Jiskrová, Irena Vrtková, Petra Bartoňová, and Tomáš Urban
Arch. Anim. Breed., 67, 323–333, https://doi.org/10.5194/aab-67-323-2024, https://doi.org/10.5194/aab-67-323-2024, 2024
Short summary
Short summary
The aim of this study is to assess the genetic diversity and structure of the Haflinger horse population in the Czech Republic based on 16 microsatellite loci. The results indicated a high level of diversity and the presence of greater admixture, and the identification of distinct genetic clusters suggested a significant gene flow. These findings imply that the population exhibits sufficient genetic variability and diversity.
Related subject area
Subject: Husbandry | Animal: Cattle
The effects of novel electrical teat dipping on some mastitis parameters in dairy herds
Evaluation of semen parameters from Fleckvieh–Simmental bulls and the influence of age and season of collection
Mitigation of sterigmatocystin exposure in cattle by difructose anhydride III feed supplementation and detection of urinary sterigmatocystin and serum amyloid A concentrations
Herd clustering strategies and corresponding genetic evaluations based on social–ecological characteristics for a local endangered cattle breed
The effect of rearing conditions during the milk-fed period on milk yield, growth, and maze behaviour of dairy cows during their first lactation
Effects of slaughter age and muscle type on meat quality characteristics of Eastern Anatolian Red bulls
Relationships between milk protein polymorphisms and production traits in cattle: a systematic review and meta-analysis
Three-step in vitro maturation culture of bovine oocytes imitating temporal changes of estradiol-17β and progesterone concentrations in preovulatory follicular fluid
A new somatic cell count index to more accurately predict milk yield losses
Prevalence of metabolic disorders and effect on subsequent daily milk quantity and quality in Holstein cows
The effect of cattle breed, season and type of diet on the fatty acid profile of raw milk
Chemical, physical and technological properties of milk as affected by the mycotoxin load of dairy herds
Effects of parity and season on pregnancy rates after the transfer of embryos to repeat-breeder Japanese Black beef cattle
Breeding criteria and willingness to pay for improved Azawak zebu sires in Niger
Review of the assessment of animal welfare with special emphasis on the "Welfare Quality® animal welfare assessment protocol for growing pigs"
Tarik Safak, Ali Risvanli, Oznur Yilmaz, Burak Yuksel, Nevzat Saat, and Burak Tanyeri
Arch. Anim. Breed., 66, 141–143, https://doi.org/10.5194/aab-66-141-2023, https://doi.org/10.5194/aab-66-141-2023, 2023
Short summary
Short summary
The team that prepared this article developed and patented electrical teat dipping (ETD) to prevent cow mastitis. ETD was developed by combining teat dipping application and an electrical field stimulation technique on teats. In this study, it was aimed to determine the effects of ETD on clinical mastitis incidence and bulk tank milk somatic cell counts on dairy farms. Based on our findings, we conclude that the effects of ETD on mastitis rates reduction are very positive.
Radek Filipčík, Zuzana Rečková, Vojtěch Pešan, Oleksandra Konoval, and Tomáš Kopec
Arch. Anim. Breed., 66, 113–120, https://doi.org/10.5194/aab-66-113-2023, https://doi.org/10.5194/aab-66-113-2023, 2023
Short summary
Short summary
The aim of this paper was to evaluate semen parameters from Czech Fleckvieh bulls used in artificial insemination (AI) in the Fleckvieh population. We analyzed 1029 samples from 46 Fleckvieh bulls from one AI station. Semen from the bulls was collected once a week, which is not usual in other AI stations. We also assessed sperm quality parameters of ejaculate before freezing and after thawing. The ejaculate parameters were evaluated in relation to the collection season and the age of the bulls.
Naoya Sasazaki, Seiich Uno, Emiko Kokushi, Katsuki Toda, Hiroshi Hasunuma, Daisaku Matsumoto, Ayaka Miyashita, Osamu Yamato, Hiroaki Okawa, Masayuki Ohtani, Johanna Fink-Gremmels, Masayasu Taniguchi, and Mitsuhiro Takagi
Arch. Anim. Breed., 64, 257–264, https://doi.org/10.5194/aab-64-257-2021, https://doi.org/10.5194/aab-64-257-2021, 2021
Short summary
Short summary
We evaluated the effects of supplementing cattle feed with difructose anhydride III (DFA III) by measuring urinary sterigmatocystin (STC) concentrations. DFA III was supplemented for 2 weeks to 10 animals, and non-treated animals served as controls. Our findings demonstrate the effect of DFA III on reducing the urinary concentration of STC in Japanese Black cattle.
Jonas Herold, Kerstin Brügemann, and Sven König
Arch. Anim. Breed., 64, 187–198, https://doi.org/10.5194/aab-64-187-2021, https://doi.org/10.5194/aab-64-187-2021, 2021
Short summary
Short summary
For local breeds kept in small herds, consideration of classical herd effects implies imprecise genetic evaluations. In consequence, the present study aimed to evaluate different herd clustering strategies, considering social–ecological and herd characteristics. The similarities of herds within created herd clusters and improved reliabilities of estimated breeding values suggest the application of herd clusters in statistical models for genetic evaluations in local breeds.
Jan Broucek, Michal Uhrincat, Peter Kisac, and Anton Hanus
Arch. Anim. Breed., 64, 69–82, https://doi.org/10.5194/aab-64-69-2021, https://doi.org/10.5194/aab-64-69-2021, 2021
Short summary
Short summary
The objective was to find whether cow growth, milk performance, and behaviour are affected by rearing conditions until weaning after a milk-fed period of 84 d. Holstein heifers were assigned to one of three treatments: SM, pen with mother to 21st day, then group pen; SN, with own mother, then in pen with nursing cow; H, in hutch from 2nd to 56th day. The SN group tended to have the highest production of milk for 305 d and crossed the maze the fastest.
Sinan Kopuzlu, Nurinisa Esenbuga, Alper Onenc, Muhlis Macit, Mete Yanar, Sadrettin Yuksel, Abdulkadir Ozluturk, and Necdet Unlu
Arch. Anim. Breed., 61, 497–504, https://doi.org/10.5194/aab-61-497-2018, https://doi.org/10.5194/aab-61-497-2018, 2018
Short summary
Short summary
The effects of slaughter age and muscle type on meat quality properties of Eastern Anatolian Red (EAR) bulls (n = 46) were investigated in the present study. Forty-six EAR bulls were slaughtered at 15, 17, 19, 25, and 27 months. Meat samples were taken from longissimus dorsi (LD) and gluteus medius (GM) muscles obtained from the carcasses 24 h post-mortem.
Memis Ozdemir, Sinan Kopuzlu, Mehmet Topal, and Omer Cevdet Bilgin
Arch. Anim. Breed., 61, 197–206, https://doi.org/10.5194/aab-61-197-2018, https://doi.org/10.5194/aab-61-197-2018, 2018
Short summary
Short summary
The meta-analysis demonstrated that the relationships of major milk protein genes with other factors should be examined using the codominant genetic model in general. According to results of the meta-analysis, relationships among some CSN3 genotypes and fat yield, fat content, and protein content, and relationships among some BLG genotypes and daily milk yield, fat content, protein yield, and protein content were found statistically significant (p < 0.05).
Minami Matsuo, Kazuma Sumitomo, Chihiro Ogino, Yosuke Gunji, Ryo Nishimura, and Mitsugu Hishinuma
Arch. Anim. Breed., 60, 385–390, https://doi.org/10.5194/aab-60-385-2017, https://doi.org/10.5194/aab-60-385-2017, 2017
Short summary
Short summary
Bovine cumulus–oocyte complexes were cultured in a three-step system imitating estradiol-17β (E2) and progesterone (P4) concentrations in preovulatory follicular fluid for in vitro maturation (IVM). The blastocyst formation rate after E2- and P4-imitated IVM was significantly higher than that after the other IVM (control, E2-imitated, P4-imitated), suggesting that the three-step IVM system with the preovulatory levels of E2 and P4 improves the developmental potential of embryos in vitro.
Janez Jeretina, Dejan Škorjanc, and Drago Babnik
Arch. Anim. Breed., 60, 373–383, https://doi.org/10.5194/aab-60-373-2017, https://doi.org/10.5194/aab-60-373-2017, 2017
Short summary
Short summary
Intramammary infections in dairy cows lead to considerable economic losses for farmers. A new somatic cell count index (SCCI) was proposed for the accurate prediction of milk yield losses caused by elevated somatic cell count (SCC). Depending on the time of SCC elevation, parity, milk production level, and level of average SCC, the estimated milk yield loss from the phenotypic potential of milk yield was at least 0.8–0.9 kg day−1 for primiparous cows and 1.3–4.3 kg day−1 for multiparous cows.
Vesna Gantner, Tina Bobić, and Klemen Potočnik
Arch. Anim. Breed., 59, 381–386, https://doi.org/10.5194/aab-59-381-2016, https://doi.org/10.5194/aab-59-381-2016, 2016
Oto Hanuš, Ludmila Křížová, Eva Samková, Jiří Špička, Josef Kučera, Marcela Klimešová, Petr Roubal, and Radoslava Jedelská
Arch. Anim. Breed., 59, 373–380, https://doi.org/10.5194/aab-59-373-2016, https://doi.org/10.5194/aab-59-373-2016, 2016
Short summary
Short summary
This study aimed to determine the effect of cow breed, season and type of diet on the fatty acid profile of raw milk. The study was conducted on bulk milk samples collected in winter and summer from 4 herds of Czech Fleckvieh and 4 herds of Holstein cows. One half of the herds was grazed while the other half was not. Effect of breed was found in odd-chain, branch-chain and hypercholesterolemic FA while season and type of diet mainly influenced the proportion of saturated and polyunsaturated FA.
Ludmila Křížová, Oto Hanuš, Marcela Klimešová, Jan Nedělník, Josef Kučera, Petr Roubal, Jaroslav Kopecký, and Radoslava Jedelská
Arch. Anim. Breed., 59, 293–300, https://doi.org/10.5194/aab-59-293-2016, https://doi.org/10.5194/aab-59-293-2016, 2016
Short summary
Short summary
The aim of the study was to determine the impacts of different levels of mycotoxin load of dairy herds on the milk indicators. During three subsequent years, samples of feedstuffs and individual milk were collected from four herds of Czech Fleckvieh and from four herds of Holstein cows. The most frequently occurring mycotoxins were fumonisins, deoxynivalenol, and zearalenone. Changes were noted in some milk indicators such as fat, acetone, pH, electric conductivity, alcohol stability, or curd quality.
T. Ono, T. Isobe, Y. Morita, L. T. K. Do, F. Tanihara, M. Taniguchi, M. Takagi, and T. Otoi
Arch. Anim. Breed., 59, 45–49, https://doi.org/10.5194/aab-59-45-2016, https://doi.org/10.5194/aab-59-45-2016, 2016
Short summary
Short summary
Our studies evaluated the effects of parity and season on pregnancy rates of repeat-breeder (RB) Japanese black beef cattle after embryo transfer. Our findings indicate that the parity of the recipients does not have an apparent effect on the pregnancy rates following the transfer of fresh and frozen embryos. However, season may affect reproductive performance in RB multiparous cows.
S. Siddo, N. Moula, I. Hamadou, M. Issa, H. Marichatou, P. Leroy, and N. Antoine-Moussiaux
Arch. Anim. Breed., 58, 251–259, https://doi.org/10.5194/aab-58-251-2015, https://doi.org/10.5194/aab-58-251-2015, 2015
I. Czycholl, K. Büttner, E. grosse Beilage, and J. Krieter
Arch. Anim. Breed., 58, 237–249, https://doi.org/10.5194/aab-58-237-2015, https://doi.org/10.5194/aab-58-237-2015, 2015
Cited articles
Alain, K., Karrow, N. A., Thibault, C., St-Pierre, J., Lessard, M., and
Bissonnette, N.: Osteopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with
resistance to mastitis, BMC Genomics, 10, 1–17,
https://doi.org/10.1186/1471-2164-10-444, 2019.
Alhussien, M. N. and Dang, A. K.: Interaction between stress hormones and
phagocytic cells and its effect on the health status of dairy cows: A
review, Vet. World, 13, 1837–1848, https://doi.org/10.14202/vetworld.2020.1837-1848,
2020.
Alim, M. A., Sun, D., Zhang, Y., Zhang, Y., Zhang, Q., and Liu, L.: DNA
Polymorphisms in the lactoglobulin ans K-casein Gense Associated with Milk
Production Traits on Dairy Cattle, Bioresearch Communications-(BRC), 1, 82–86,
https://bioresearchcommunications.com/index.php/brc/article/view/169 (last access: 5 October 2022), 2015.
Akhtar, M., Guo, S., Guo, Y. F., Zahoor, A., Shaukat, A., Chen, Y., and Guo, M.: Upregulated-gene expression of pro-inflammatory cytokines
(TNF-α, IL-1β and IL-6) via TLRs following NF-κB and
MAPKs in bovine mastitis, Acta Trop., 207, 105458,
https://doi.org/10.1016/j.actatropica.2020.105458, 2020.
Alekish, M., Ababneh, H., Ismail, Z., and Alshehabat, M.: The relationship
between lactoferrin gene polymorphism and subclinical mastitis in Awassi
ewes, J. Anim. Plant Sci., 29, 1193–1197, 2019.
Asselstine, V., Miglior, F., Suárez-Vega, A., Fonseca, P. A. S.,
Mallard, B., Karrow, N., and Cánovas, A.: Genetic mechanisms
regulating the host response during mastitis, J. Dairy Sci., 102, 9043–9059,
https://doi.org/10.3168/jds.2019-16504, 2019.
Ateya, A. I., El-Seady, Y. Y., Atwa, S. M., Merghani, B. H., and Sayed, N.
A.: Novel single nucleotide polymorphisms in lactoferrin gene and their
association with mastitis susceptibility in Holstein
cattle, Genetika, 48, 199–210, https://doi.org/10.2298/GENSR1601199A, 2019.
Bobbo, T., Penasa, M., and Cassandro, M.: Genetic aspects of milk
differential somatic cell count in Holstein cows: A preliminary
analysis, J. Dairy Sci., 102, 4275–4279, https://doi.org/10.3168/jds.2018-16092, 2019.
Bannerman, D. D.: Pathogen-dependent induction of cytokines and other
soluble inflammatory mediators during intramammary infection of dairy
cows, J. Anim. Sci., 87, 10–25,
https://doi.org/10.2527/jas.2008-1187, 2009.
Bannerman, D. D., Paape, M. J., Hare, W. R., and Hope, J. C.:
Characterization of the bovine innate immune response to intramammary
infection with Klebsiella pneumoniae, J. Dairy Sci., 87, 2420–2432,
https://doi.org/10.3168/jds.S0022-0302(04)73365-2, 2004.
Bannerman, D. D., Paape, M. J., Hare, W. R., and Sohn, E. J.: Increased
levels of LPS-binding protein in bovine blood and milk following bacterial
lipopolysaccharide challenge, J. Dairy Sci., 86, 3128–3137,
https://doi.org/10.3168/jds.S0022-0302(03)73914-9, 2003.
Bannerman, D. D., Paape, M. J., Lee, J. W., Zhao, X., Hope, J. C., and Rainard, P.: Escherichia coli and Staphylococcus aureus elicit differential
innate immune responses following intramammary infection, Clin. Vaccine Immunol., 11, 463–472,
https://doi.org/10.1128/CDLI.11.3.463-472.2004, 2004.
Bannerman, D. D., Kauf, A. C. W., Paape, M. J., Springer, H. R., and Goff,
J. P.: Comparison of Holstein and Jersey innate immune responses to
Escherichia coli intramammary infection, J. Dairy Sci., 91, 2225–2235,
https://doi.org/10.3168/jds.2008-1013, 2008.
Bassel, L. L. and Caswell, J. L.: Bovine neutrophils in health and
disease, Cell Tiss. Res., 371, 617–637, https://doi.org/10.1007/s00441-018-2789-y, 2018.
Bikle, D. D., Xie, Z., and Tu, C. L.: Calcium regulation of keratinocyte
differentiation, Expert Rev. Endo. Metab., 7, 461–472, https://doi.org/10.1586/eem.12.34, 2012.
Blowey, R. W. and Edmondson, P.: Mastitis control in dairy herds, Wallingford, Oxfordshire, UK, CABI, 266 pp.
https://books.google.cz (last access: 1 August 2022), 2010.
Boudjellab, N., Chan-Tang, H. S., and Zhao, X.: Bovine interleukin-1
expression by cultured mammary epithelial cells (MAC-T) and its involvement
in the release of MAC-T derived interleukin-8, Comp. Biochem. Phys. A, 127, 191–199,
https://doi.org/10.1016/S1095-6433(00)00257-9, 2000.
Bradley, A. J. and Green, M. J.: A study of the incidence and significance
of intramammary enterobacterial infections acquired during the dry
period, J. Dairy Sci., 83, 1957–1965, https://doi.org/10.3168/jds.S0022-0302(00)75072-7,
2000.
Bradley, A. J. and Green, M. J.: The importance of the nonlactating period
in the epidemiology of intramammary infection and strategies for
prevention, Vet. Clin. N. Am.-Food A, 20, 547–568, https://doi.org/10.1016/j.cvfa.2004.06.010,
2004.
Burvenich, C., Detilleux, J., Paape, M. J., and Massart-Leën, A. M.:
Physiological and genetic factors that influence the cow resistance to
mastitis, especially during early lactation, Flem. Vet. J., 9–20, 2000.
Burvenich, C., Van Merris, V., Mehrzad, J., Diez-Fraile, A., and Duchateau,
L.: Severity of E. coli mastitis is mainly determined by cow
factors, Vet. Res., 34, 521–564, https://doi.org/10.1051/vetres:2003023, 2003.
Carlén, E., Strandberg, E., and Roth, A.: Genetic parameters for
clinical mastitis, somatic cell score, and production in the first three
lactations of Swedish Holstein cows, J. Dairy Sci., 87, 3062–3070,
https://doi.org/10.3168/jds.S0022-0302(04)73439-6, 2004.
Chaneton, L., Sáez, J. P., and Bussmann, L. E.: Antimicrobial activity
of bovine β-lactoglobulin against mastitis-causing bacteria, J. Dairy Sci., 94,
138–145, https://doi.org/10.3168/jds.2010-3319, 2011.
Chegini, A., Hossein-Zadeh, N. G., Hosseini-Moghadam, S. H., and Shadparvar, A. A.: Genetic correlation estimates between milk production
traits, mastitis and different measures of somatic cells in Holstein
cows, An. Prod. Sci., 59, 1031–1038, https://doi.org/10.1071/AN17325, 2018.
Cheng, W. N. and Han, S. G.: Bovine mastitis: Risk factors, therapeutic
strategies, and alternative treatments – A review, Asian-Austral. J. Anim., 33, 1699,
https://doi.org/10.5713/ajas.20.0156, 2020.
Coulon, J. B., Hurtaud, C., Rémond, B., and Verite, R.: Factors
contributing to variation in the proportion of casein in cows' milk true
protein: a review of recent INRA experiments, J. Dairy Res., 65, 375–387,
https://doi.org/10.1017/S0022029998002866, 1998.
Deb, R., Singh, U., Kumar, S., Kumar, A., Sharma, A., Mann, S., and Singh,
R.: TIR domain of bovine TLR4 gene in Frieswal crossbred cattle: An early
marker for mastitis resistance, Ind. J. Anim. Sci., 83, 633–635, 2013.
Derakhshani, H., Fehr, K. B., Sepehri, S., Francoz, D., De Buck, J.,
Barkema, H. W., and Khafipour, E.: Invited review: Microbiota of the
bovine udder: Contributing factors and potential implications for udder
health and mastitis susceptibility, J. Dairy Sci., 101, 10605–10625,
https://doi.org/10.3168/jds.2018-14860, 2018.
Derakhshani, H., Plaizier, J. C., De Buck, J., Barkema, H. W., and Khafipour, E.: Composition of the teat canal and intramammary microbiota of
dairy cows subjected to antimicrobial dry cow therapy and internal teat
sealant, J. Dairy Sci., 101, 10191–10205, https://doi.org/10.3168/jds.2018-14858, 2018.
Elazar, S., Gonen, E., Livneh-Kol, A., Rosenshine, I., and Shpigel, N. Y.:
Essential role of neutrophils but not mammary alveolar macrophages in a
murine model of acute Escherichia coli mastitis, Vet. Res., 41, 53,
https://doi.org/10.1051/vetres/2010025, 2010.
Erskine, R. J.: Vaccination strategies for mastitis, Vet. Clin. N. Am.-Food A, 28, 257–270,
https://doi.org/10.1016/j.cvfa.2012.03.002, 2012.
Esposito, G., Irons, P. C., Webb, E. C., and Chapwanya, A.: Interactions
between negative energy balance, metabolic diseases, uterine health and
immune response in transition dairy cows, An. Repro. Sci., 144, 60–71,
https://doi.org/10.1016/j.anireprosci.2013.11.007, 2014.
Ezz, M. A., Marey, M. A., Elweza, A. E., Kawai, T., Heppelmann, M., Pfarrer,
C., and Miyamoto, A.: TLR2/4 signaling pathway mediates sperm-induced
inflammation in bovine endometrial epithelial cells in vitro, PLoS One, 14,
e0214516, https://doi.org/10.1371/journal.pone.0214516, 2019.
Faraj, T. A., McLaughlin, C. L., and Erridge, C.: Host defenses against
metabolic endotoxaemia and their impact on lipopolysaccharide
detection, Int. Rev. Immun., 36, 125–144, 2017,
https://doi.org/10.1080/08830185.2017.1280483
Freu, G., Tomazi, T., Monteiro, C. P., Barcelos, M. M., Alves, B. G., and Santos, M. V. D.: Internal teat sealant administered at drying off reduces
intramammary infections during the dry and early lactation periods of dairy
cows, Animals, 10, 1522, https://doi.org/10.3390/ani10091522, 2020.
Galvao, K. N., Pighetti, G. M., Cheong, S. H., Nydam, D. V.,and Gilbert,
R. O.: Association between interleukin-8 receptor-α (CXCR1)
polymorphism and disease incidence, production, reproduction, and survival
in Holstein cows, J. Dairy Sci., 94, 2083–2091, https://doi.org/10.3168/jds.2010-3636,
2011.
García-Ruiz, A., Cole, J. B., VanRaden, P. M., Wiggans, G. R.,
Ruiz-López, F. J., and Van Tassell, C. P.: Changes in genetic selection
differentials and generation intervals in US Holstein dairy cattle as a
result of genomic selection, P. Natl. Acad. Sci. USA, 113, 3995–4004,
https://doi.org/10.1073/pnas.1519061113, 2016.
Gilbert, F. B., Cunha, P., Jensen, K., Glass, E. J., Foucras, G.,
Robert-Granié, C., and Rainard, P.: Differential response of bovine
mammary epithelial cells to Staphylococcus aureus or Escherichia coli
agonists of the innate immune system, Vet. Res., 44, 1–23,
https://doi.org/10.1186/1297-9716-44-40, 2013.
Gogoi-Tiwari, J., Williams, V., Waryah, C. B., Costantino, P., Al-Salami,
H., Mathavan, S., and Mukkur, T.: Mammary gland pathology subsequent to
acute infection with strong versus weak biofilm forming Staphylococcus aureus bovine mastitis isolates: a pilot study using non-invasive mouse
mastitis model, PLoS One, 12, e0170668,
https://doi.org/10.1371/journal.pone.0170668, 2017.
Gombart, A. F., Pierre, A., and Maggini, S.: A review of micronutrients and
the immune system–working in harmony to reduce the risk of
infection, Nutrients, 12, 236, https://doi.org/10.3390/nu12010236, 2020.
Griesbeck-Zilch, B., Osman, M., Kühn, C., Schwerin, M., Bruckmaier, R.
H., Pfaffl, M. W., and Wellnitz, O.: Analysis of key molecules of the
innate immune system in mammary epithelial cells isolated from
marker-assisted and conventionally selected cattle, J. Dairy Sci., 92, 4621–4633,
https://doi.org/10.3168/jds.2008-1954, 2009.
Guccione, J., Pesce, A., Pascale, M., Salzano, C., Tedeschi, G., D'Andrea,
L., and Ciaramella, P.: Efficacy of a polyvalent mastitis vaccine
against Staphylococcus aureus on a dairy Mediterranean buffalo farm: results
of two clinical field trials, BMC Vet. Res., 13, 1–9,
https://doi.org/10.1186/s12917-017-0944-4, 2016.
Günther, J. and Seyfert, H. M.: The first line of defence: insights
into mechanisms and relevance of phagocytosis in epithelial cells,
in: Seminars in immunopathology, Springer Berlin Heidelberg, 40, 555–565,
https://doi.org/10.1007/s00281-018-0701-1, 2018.
Hagiwara, S. I., Kawai, K., Anri, A., and Nagahata, H.: Lactoferrin
concentrations in milk from normal and subclinical mastitic cows, J. Vet. Med. Sci., 65,
319–323, https://doi.org/10.1292/jvms.65.319, 2003.
Hamel, J., Zhang, Y., Wente, N., and Krömker, V.: Heat stress and cow
factors affect bacteria shedding pattern from naturally infected mammary
gland quarters in dairy cattle, J. Dairy Sci., 104, 786–794,
https://doi.org/10.3168/jds.2020-19091, 2021.
Harmon, R. J. and Newbould, F. H. S.: Neutrophil leukocyte as a source of
lactoferrin in bovine milk, Am. J. Vet. Res., 41, 1603–1606, 1980.
Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J., and Goddard, M.
E.: Genetic architecture of complex traits and accuracy of genomic
prediction: coat colour, milk-fat percentage, and type in Holstein cattle as
contrasting model traits, PLoS Genet., 6, e1001139,
https://doi.org/10.1371/journal.pgen.1001139, 2010.
Hirsch, V., Blufstein, A., Behm, C., and Andrukhov, O.: The Alterations in
CD14 Expression in Periodontitis: A Systematic Review, Appl. Sci., 11, 2444,
https://doi.org/10.3390/app11052444, 2021.
He, X., Liu, W., Shi, M., Yang, Z., Zhang, X., and Gong, P.:
Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by
regulating the PPARγ/NF-κB pathways in primary bovine
mammary epithelial cells, Res. Vet. Sci., 112, 7–12,
https://doi.org/10.1016/j.rvsc.2016.12.011, 2017.
Hedrick, J. A., Morales, J., and Zlotnik, A.: Recent advances in chemokines
and chemokine receptors, Crit. Rev. Immun., 19, 1–47,
https://doi.org/10.1615/CritRevImmunol.v19.i1.10, 1999.
Heringstad, B., Chang, Y. M., Gianola, D., and Klemetsdal, G.: Genetic
association between susceptibility to clinical mastitis and protein yield in
Norwegian dairy cattle, J. Dairy Sci., 88, 1509–1514,
https://doi.org/10.3168/jds.S0022-0302(05)72819-8, 2005.
Heringstad, B., Klemetsdal, G., and Ruane, J.: Selection for mastitis
resistance in dairy cattle: a review with focus on the situation in the
Nordic countries, Livest. Prod. Sci., 64, 95–106,
https://doi.org/10.1016/S0301-6226(99)00128-1, 2000.
Herrera, D.: Predisposing factors and means of prevention of colibacillar
mastitis, Albéitar, 124, 16–17, 2009.
Hogan, J. and Smith, K. L.: Coliform mastitis, Vet. Res., 34, 507–519,
https://doi.org/10.1051/vetres:2003022, 2003.
Hu, Z. L., Park, C. A., and Reecy, J. M.: Building a livestock genetic and
genomic information knowledgebase through integrative developments of Animal
QTLdb and CorrDB, Nucl. Acid. Res., 47, 701–710, https://doi.org/10.1093/nar/gky1084,
2019.
Huang, F. C.: The Interleukins Orchestrate Mucosal Immune Responses to
Salmonella Infection in the Intestine, Cells, 10, 3492,
https://doi.org/10.3390/cells10123492, 2021.
Huang, Y. Q., Morimoto, K., Hosoda, K., Yoshimura, Y., and Isobe, N.:
Differential immunolocalization between lingual antimicrobial peptide and
lactoferrin in mammary gland of dairy cows, Vet. Immunol. Immunop., 145, 499–504,
https://doi.org/10.1016/j.vetimm.2011.10.017, 2012.
Ibeagha-Awemu, E. M., Lee, J. W., Ibeagha, A. E., and Zhao, X.: Bovine CD14
gene characterization and relationship between polymorphisms and surface
expression on monocytes and polymorphonuclear neutrophils, BMC Genet., 9, 1–11,
https://doi.org/10.1186/1471-2156-9-50, 2008.
Ingvartsen, K. L. and Moyes, K.: Nutrition, immune function and health of
dairy cattle, Animal, 7, 112–122, https://doi.org/10.1017/S175173111200170X,
2013.
Ismail, Z. B.: Mastitis vaccines in dairy cows: Recent developments and
recommendations of application, Vet. World, 10, 1057,
https://doi.org/10.14202/vetworld.2017.1057-1062, 2017.
Iung, L. H. S., Ramírez-Diaz, J., Pertile, S. F. N., Petrini, J., Salvian, M.,
Rodriguez, M. A. P., Lima, R. R., Machado, P. F., Coutinho, L. L., and Mourao, G. B.:
Genome-wide association for somatic cell score in Holstein cows raised in
tropical conditions, Proceedings, 10th World Congress of Genetics Applied to Livestock Production, https://doi.org/10.13140/2.1.1713.8566, 2015.
Jones C. A.: Effect of zinc source on zinc retention and animal health, M. S. Thesis, University of Missouri, Columbia, 1995.
Jones, G. M. and Bailey, T. L.: Understanding the basics of mastitis, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University,
Publication, Virginia Cooperative Extension, 404–233, 2009.
Kamiński, S., Cieślińska, A., and Kostyra, E.: Polymorphism of
bovine beta-casein and its potential effect on human health, J. Appl. Gen., 48, 189–198,
https://doi.org/10.1007/BF03195213, 2007.
Karthikeyan, A., Radhika, G., Aravindakshan, T. V., Pruthviraj, D. R., and Pragathi, K. S.: Genetic basis of mastitis resistance in cattle, Int. J. Sci. Environ. Tech., 5,
2192–2199, 2016.
Khan, I., Maldonado, E., Silva, L., Almeida, D., Johnson, W. E., O'Brien, S.
J., and Antunes, A.: The vertebrate TLR supergene family evolved
dynamically by gene gain/loss and positive selection revealing a
host–pathogen arms race in birds, Diversity, 11, 131,
https://doi.org/10.3390/d11080131, 2019.
Kolls, J. K., McCray, P. B., and Chan, Y. R.: Cytokine-mediated regulation of
anti-microbial proteins, Nat. Rev. Immun., 8, 829, https://doi.org/10.1038/nri2433, 2008.
König, S. and May, K.: Invited review: Phenotyping strategies and
quantitative-genetic background of resistance, tolerance and resilience
associated traits in dairy cattle, Animal, 13, 897–908,
https://doi.org/10.1017/S1751731118003208, 2019.
Korhonen, H., Marnila, P., and Gill, H. S.: Milk immunoglobulins and
complement factors, Brit. J. Nutr., 84, 75–80,
https://doi.org/10.1017/S0007114500002282, 2000.
Kriventsov, I. M., Kriventsova, V. F., and Borisova, G. V.: The interrelationship
between the inhibitory activity of milk with different types of
beta-lactoglobulins and the resistance of cattle to mastitis,
Genetika, 11, 37–44, 1975
Krupová, Z., Zavadilová, L., Wolfová, M., Krupa, E.,
Kašná, E., and Fleischer, P.: Udder and claw-related health traits
in selection of czech holstein cows, Ann. Animal Sci., 19, 647–661,
https://doi.org/10.2478/aoas-2019-0037, 2019.
Kurz, J. P., Yang, Z., Weiss, R. B., Wilson, D. J., Rood, K. A., Liu, G. E.,
and Wang, Z.: A genome-wide association study for mastitis resistance in
phenotypically well-characterized Holstein dairy cattle using a selective
genotyping approach, Immunogenetics, 71, 35–47, 2019.
Langrová, T., Sládek, Z., and Ryšánek, D.: Vliv
bakterií Staphylococcus aureus a Streptococcus uberis na
morfologické projevy apoptózy neutrofilních granulocytů
mléčné žlázy skotu in vitro, Acta univ. agric. et silvic. Mendel. Brun., 53, 61–74, 2005.
Lee, J. W., Paape, M. J., Elsasser, T. H., and Zhao, X.: Elevated milk
soluble CD14 in bovine mammary glands challenged with Escherichia coli
lipopolysaccharide, J. Dairy Sci., 86, 2382–2389,
https://doi.org/10.3168/jds.S0022-0302(03)73832-6, 2003.
Leitner, G., Shoshani, E., Krifucks, O., Chaffer, M., and Saran, A.: Milk
leucocyte population patterns in bovine udder infection of different
aetiology, J. Vet. Med. Ser. B., 47, 581–589, https://doi.org/10.1046/j.1439-0450.2000.00388.x,
2000.
Lewandowska-Sabat, A. M., Günther, J., Seyfert, H. M., and Olsaker, I.:
Combining quantitative trait loci and heterogeneous microarray data analyses
reveals putative candidate pathways affecting mastitis in cattle, Animal Gen., 43,
793–799, https://doi.org/10.1111/j.1365-2052.2012.02342.x, 2012.
Li, N., Richoux, R., Boutinaud, M., Martin, P., and Gagnaire, V.: Role of
somatic cells on dairy processes and products: a review, Dairy Sci. Technol., 94, 517–538,
https://doi.org/10.1007/s13594-014-0176-3, 2014.
Li, X., Huang, W., Gu, J., Du, X., Lei, L., Yuan, X., and Liu, G.:
SREBP-1c overactivates ROS-mediated hepatic NF-κB inflammatory
pathway in dairy cows with fatty liver, Cell. Signal.,
27, 2099–2109,
https://doi.org/10.1016/j.cellsig.2015.07.011, 2015.
Litwińczuk, Z., Król, J., Brodziak, A., and Barłowska, J.:
Changes of protein content and its fractions in bovine milk from different
breeds subject to somatic cell count, J. Dairy Sci., 94, 684–691,
https://doi.org/10.3168/jds.2010-3217, 2011.
Luhar, R., Patel, R. K., and Singh, K. M.: Studies on the possible
association of beta-lactoglobulin genotype with mastitis in dairy
cows, Ind. J. Dairy Sci., 59, 155–158, 2006.
Lund, M. S., Guldbrandtsen, B., Buitenhuis, A. J., Thomsen, B., and Bendixen, C.: Detection of quantitative trait loci in Danish Holstein cattle
affecting clinical mastitis, somatic cell score, udder conformation traits,
and assessment of associated effects on milk yield, J. Dairy Sci., 91, 4028–4036,
https://doi.org/10.3168/jds.2007-0290, 2008.
Mahmood, I., Nadeem, A., Babar, M. E., Ali, M. M., Javed, M., Siddiqa, A.,
and Pervez, M. T.: Systematic and Integrated Analysis Approach to
Prioritize Mastitis Resistant Genes, Pak. J. Zoolog., 49, 103–109,
https://doi.org/10.17582/journal.pjz/2017.49.1.103.109, 2017.
Mann, S., Sipka, A. S., and Grenier, J. K.: The degree of postpartum
metabolic challenge in dairy cows is associated with peripheral blood
mononuclear cell transcriptome changes of the innate immune
system, Develop. Compar. Immun., 93, 28–36, https://doi.org/10.1016/j.dci.2018.11.021, 2019.
Mayadas, T. N., Cullere, X., and Lowell, C. A.: The multifaceted functions
of neutrophils, Annu. Rev. Pathol., 9, 181,
https://doi.org/10.1146/annurev-pathol-020712-164023, 2014.
Meredith, B. K., Kearney, F. J., Finlay, E. K., Bradley, D. G., Fahey, A.
G., Berry, D. P., and Lynn, D. J.: Genome-wide associations for milk
production and somatic cell score in Holstein-Friesian cattle in
Ireland, BMC Genet., 13, 1–11, https://doi.org/10.1186/1471-2156-13-21, 2012.
Miles, A. M. and Huson, H. J.: Graduate student literature review:
understanding the genetic mechanisms underlying mastitis, J. Dairy Sci., 104, 1183–1191,
https://doi.org/10.3168/jds.2020-18297, 2021.
Mladosievičová B., Bachárová L., Bucová M.,
Cingelová S., Goncalvesová E., Grešíková M., Hricák
V., Látalová P., Murín J., Pika T., Rajec T., Rečková
M., Roziaková L., Svoboda M., Šimková I., Špánik S.,
Štvrtinová V., Valentová M., von Haehling S., Vymětal J.,
and Wagnerová M.: Kardioonkologie, 2. přepracované a doplněné vydání. Grada, Praha, 208 pp., 2015.
Mohammadnezhad, M., Mianji, G. R., and Farhadi, A.: Identification of
allelic variants of complement C4-A and Lactoferrin genes using iPLEX
technique and its association with somatic cell count in Holstein
cattle, Animal Prod., 23, 1–11, https://doi.org/10.22059/JAP.2021.309975.623559, 2021.
Musayeva, K., Sederevicius, A., Zelvyte, R., Monkeviciene, I., Beliavska, A.
D., and Garbenyte, Z.: Lactoferrin and immunogl obulin content in cow milk
in relation to somatic cell count and number of lactations, Vet. IR Zootech., 76, ISSN 1392-2130, 2018.
Nickerson, S. C.: Mastitis control in replacement heifers, Adv. Dairy Technol., 8, 389–398,
https://doi.org/10.21423/aabppro19916717, 1991.
Nikaido, H.: Outer membrane, Escherichia coli and Salmonella typhimurium: cellular and molecular biology,
edited by: Neidhardt, F. C., Ingraham, J. L., Low, K. B., Magasanik, B., Schaechter, M., and Umbarger, H. E., American Society for Microbiology, Washington, D.C., 1, 7–22, 1987.
Ogorevc, J., Kunej, T., Razpet, A., and Dovc, P.: Database of cattle
candidate genes and genetic markers for milk production and
mastitis, Animal Gen., 40, 832–851, https://doi.org/10.1111/j.1365-2052.2009.01921.x,
2009.
Ohtsuka, H., Kudo, K., Mori, K., Nagai, F., Hatsugaya, A., Tajima, M.,
and Kawamura, S. I.: Acute Phase Response in Naturally
Occurring Coliform Mastitis, J. Vet. Med. Sci., 63, 675–678,
https://doi.org/10.1292/jvms.63.675, 2001.
Oviedo-Boyso, J., Valdez-Alarcón, J. J., Cajero-Juárez, M.,
Ochoa-Zarzosa, A., López-Meza, J. E., Bravo-Patiño, A., and Baizabal-Aguirre, V. M.: Innate immune response of bovine mammary gland to
pathogenic bacteria responsible for mastitis, J. Infect., 54, 399–409,
https://doi.org/10.1016/j.jinf.2006.06.010, 2007.
Paape, M., Mehrzad, J., Zhao, X., Detilleux, J., and Burvenich, C.: Defense
of the bovine mammary gland by polymorphonuclear neutrophil
leukocytes, J. Mammary. Gland Biol., 7, 109–121, https://doi.org/10.1023/A:1020343717817, 2002.
Pant, S. D., Verschoor, C. P., Skelding, A. M., Schenkel, F. S., You, Q.,
Biggar, G. A., and Karrow, N. A.: Bovine IFNGR2, IL12RB1, IL12RB2, and
IL23R polymorphisms and MAP infection status, Mamm. Genom., 22, 583–588,
https://doi.org/10.1007/s00335-011-9332-8, 2011.
Paulrud, C. O.: Basic concepts of the bovine teat canal., Vet. Res. Commun., 29, 215–245,
https://doi.org/10.1023/B:VERC.0000047496.47571.41, 2005.
Pawlik, A., Sender, G., Kapera, M., and Korwin-Kossakowska, A.: Association
between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy
cattle, Central-Europ. J. Immun., 40, 153, https://doi.org/10.5114/ceji.2015.52828, 2015.
Persson, K., Colditz, I. G., Flapper, P., Franklin, N. A. F., and Seow, H.
F.: Cytokine-induced inflammation in the ovine teat and udder, Vet. Immunol. Immunop., 53,
73–85, https://doi.org/10.1016/0165-2427(96)05561-4, 1996.
Pighetti, G. M. and Elliott, A. A.: Gene polymorphisms: the keys for
marker assisted selection and unraveling core regulatory pathways for
mastitis resistance, J. Mammary. Gland Biol., 16, 421–432,
https://doi.org/10.1007/s10911-011-9238-9, 2011.
Poppe, M., Veerkamp, R. F., Van Pelt, M. L., and Mulder, H. A.: Exploration
of variance, autocorrelation, and skewness of deviations from lactation
curves as resilience indicators for breeding J. Dairy Sci., 103, 1667–1684,
https://doi.org/10.3168/jds.2019-17290, 2020.
Pyörälä, S.: New strategies to prevent mastitis, Reprod. Domes. Animal., 37, 211–216,
https://doi.org/10.1046/j.1439-0531.2002.00378.x, 2002.
Rainard, P. and Riollet, C.: Innate immunity of the bovine mammary gland,
Vet. Res., 37, 369–400, https://doi.org/10.1051/vetres:2006007, 2006.
Rainard, P.: Mammary microbiota of dairy ruminants: fact or
fiction?, Vet. Res., 48, 1–10, https://doi.org/10.1186/s13567-017-0429-2, 2017.
Rainard, P., Foucras, G., Fitzgerald, J. R., Watts, J. L., Koop, G., and Middleton, J. R.: Knowledge gaps and research priorities in Staphylococcus aureus mastitis control, Transbound. Emerg. Dis., 65, 149–165, https://doi.org/10.1111/tbed.12698,
2018.
Rambeaud, M. and Pighetti, G.: Impaired neutrophil migration associated
with specific bovine CXCR2 genotypes, Infect. Immun., 73, 4955–4959,
https://doi.org/10.1128/IAI.73.8.4955-4959.2005, 2005.
Ranoa, D. R. E., Kelley, S. L., and Tapping, R. I.: Human
lipopolysaccharide-binding protein (LBP) and CD14 independently deliver
triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance
formation of the ternary signaling complex, J. Biol. Chem., 288, 9729–9741,
https://doi.org/10.1074/jbc.M113.453266, 2013.
Reece W. O.: Fyziologie a funkční anatomie domácích zvířat, Grana, Praha, 2nd ed., 480 pp., ISBN 978-80-247-3282-4, 2011.
Rossol, M., Heine, H., Meusch, U., Quandt, D., Klein, C., Sweet, M. J., and Hauschildt, S.: LPS-induced cytokine production in human monocytes and
macrophages, Crit. Rev. Immun., 31, 379–446, https://doi.org/10.1615/critrevimmunol.v31.i5.20, 2011.
Rubin, C. I. and Atweh, G. F.: The role of stathmin in the regulation of
the cell cycle, J. Cell. Biochem., 93, 242–250, https://doi.org/10.1002/jcb.20187, 2004.
Rudziak, P., Ellis, C. G., and Kowalewska, P. M.: Role and molecular
mechanisms of pericytes in regulation of leukocyte diapedesis in inflamed
tissues, Med. Inflamm., 2019, 4123605, https://doi.org/10.1155/2019/4123605, 2019.
Ruiz, R., Tedeschi, L. O., and Sepúlveda, A.: Investigation of the
effect of pegbovigrastim on some periparturient immune disorders and
performance in Mexican dairy herds, J. Dairy Sci., 100, 3305–3317,
https://doi.org/10.3168/jds.2016-12003, 2017.
Sahana, G., Guldbrandtsen, B., Thomsen, B., and Lund, M. S.: Confirmation
and fine-mapping of clinical mastitis and somatic cell score QTL in N ordic
H olstein cattle, Animal Gen., 44, 620–626, https://doi.org/10.1111/age.12053, 2013.
Sahana, G., Guldbrandtsen, B., Thomsen, B., Holm, L. E., Panitz, F.,
Brøndum, R. F., and Lund, M. S.: Genome-wide association study using
high-density single nucleotide polymorphism arrays and whole-genome
sequences for clinical mastitis traits in dairy cattle, J. Dairy Sci., 97, 7258–7275,
https://doi.org/10.3168/jds.2014-8141, 2014.
Sharifi, S., Pakdel, A., Ebrahimie, E., Aryan, Y., Ghaderi Zefrehee, M.,
and Reecy, J. M.: Prediction of key regulators and downstream targets of E. coli induced mastitis, J. Appl. Gen., 60, 367–373,
https://doi.org/10.1007/s13353-019-00499-7, 2019.
Sharma, P., Parmar, S. N. S., Thakur, M. S., Nauriyal, D. S., and Ranjan,
R.: Association of bovine lactoferrin gene with mastitis in frieswal
cattle, Iran. J. Appl. Animal Sci., 5, 859–863, 2015.
Shimazaki, K. I. and Kawai, K.: Advances in lactoferrin research
concerning bovine mastitis, Biochem. Cell Biol., 95, 69–75,
https://doi.org/10.1139/bcb-2016-0044, 2017.
Singh, H. and Gallier, S.: Nature's complex emulsion: The fat globules of
milk, Food Hydrocol., 68, 81–89, https://doi.org/10.1016/j.foodhyd.2016.10.011, 2017.
Singh, U., Deb, R., Alyethodi, R. R., Alex, R., Kumar, S., Chakraborty, S.,
and Sharma, A.: Molecular markers and their applications in cattle
genetic research: A review, Biomark. Gen. Med., 6, 49–58,
https://doi.org/10.1016/j.bgm.2014.03.001, 2014.
Singh, U., Deb, R., Kumar, S., Singh, R., Sengar, G., and Sharma, A.:
Association of prolactin and beta-lactoglobulin genes with milk production
traits and somatic cell count among Indian Frieswal (HF × Sahiwal)
cows, Biomark. Gen. Med., 7, 38–42, https://doi.org/10.1016/j.bgm.2014.07.001, 2015.
Sordillo, L. M. and Streicher, K. L.: Mammary gland immunity and mastitis
susceptibility, J. Mammary. Gland Biol., 7, 135–146, https://doi.org/10.1023/A:1020347818725,
2002.
Soyeurt, H., Bastin, C., Colinet, F. G., Arnould, V. R., Berry, D. P., Wall,
E., and McParland, S.: Mid-infrared prediction of lactoferrin content
in bovine milk: potential indicator of mastitis, Animal, 6, 1830–1838,
https://doi.org/10.1017/S1751731112000791, 2012.
Sperandeo, P., Martorana, A. M., and Polissi, A.: Lipopolysaccharide
biogenesis and transport at the outer membrane of Gram-negative
bacteria, Biochim. Biophys. Ac., 1862, 1451–1460, https://doi.org/10.1016/j.bbalip.2016.10.006,
2017.
Su, C. H., Lin, I. H., Tzeng, T. Y., Hsieh, W. T., and Hsu, M. T.:
Regulation of IL-20 expression by estradiol through KMT2B-mediated
epigenetic modification, PloS One, 11, e0166090,
https://doi.org/10.1371/journal.pone.0166090, 2016.
Swain, D. K., Kushwah, M. S., Kaur, M., Patbandha, T. K., Mohanty, A. K.,
and Dang, A. K.: Formation of NET, phagocytic activity, surface
architecture, apoptosis and expression of toll like receptors 2 and 4 (TLR2
and TLR4) in neutrophils of mastitic cows, Vet. Res. Commun., 38, 209–219,
https://doi.org/10.1007/s11259-014-9606-1, 2014.
Talbot, B. G. and Lacasse, P.: Progress in the development of mastitis
vaccines, Livest. Prod. Sci., 98, 101–113,
https://doi.org/10.1016/j.livprodsci.2005.10.018, 2005.
Teijeira, Á., Garasa, S., Gato, M., Alfaro, C., Migueliz, I., Cirella,
A., and Melero, I.: CXCR1 and CXCR2 chemokine receptor agonists
produced by tumors induce neutrophil extracellular traps that interfere with
immune cytotoxicity, Immunity, 52, 856–871,
https://doi.org/10.1016/j.immuni.2020.03.001, 2020.
Tiezzi, F., Parker-Gaddis, K. L., Cole, J. B., Clay, J. S., and Maltecca,
C.: A genome-wide association study for clinical mastitis in first parity US
Holstein cows using single-step approach and genomic matrix re-weighting
procedure, PLoS One, 10, e0114919, https://doi.org/10.1371/journal.pone.0114919,
2015.
Tiwari, J. G., Babra, C., Tiwari, H., Williams, V., De Wet, S., Gibson, J.,
and Mukkur, T.: Trends in therapeutic and prevention strategies for
management of bovine mastitis: an overview, J. Vaccine. Vaccina., 4, 1–11,
https://doi.org/10.4172/2157-7560.1000176, 2013.
Toman M., Bárta O., Dostál J., Faldyna M., Holáň V.,
Hořín P., Hruban V., Jeklová E., Knotek Z., Kopecký J.,
Koudela B., Krejčí J., Nechvátalová K.,
Ondráčková P., Plachý J., Pospíšil R.,
Pospíšil Z., Rybníkář A., Ryšánek D., Smola
J., Šíma P., Tlaskalová H., Trebichavský I., and Veselský L.: Veterinární imunologie, Grada Publishing, a.s., Praha 7, 392 pp., 2009.
Vallimont, J. E., Dechow, C. D., Sattler, C. G., and Clay, J. S.:
Heritability estimates associated with alternative definitions of mastitis
and correlations with somatic cell score and yield, J. Dairy Sci., 92, 3402–3410,
https://doi.org/10.3168/jds.2008-1229, 2009.
Vangroenweghe, F., Lamote, I., and Burvenich, C.: Physiology of the
periparturient period and its relation to severity of clinical
mastitis, Domes. Animal Endo., 29, 283–293, https://doi.org/10.1016/j.domaniend.2005.02.016,
2005.
Védrine, M., Berthault, C., Leroux, C., Répérant-Ferter, M.,
Gitton, C., Barbey, S., and Germon, P.: Sensing of Escherichia coli and
LPS by mammary epithelial cells is modulated by O-antigen chain and
CD14, PLoS One, 13, e0202664, https://doi.org/10.1371/journal.pone.0202664, 2018.
Wall, R., Powell, A., Sohn, E., Foster-Frey, J., Bannerman, D., and Paape,
M.: Enhanced host immune recognition of mastitis causing Escherchia coli in
CD-14 transgenic mice, Animal Biotech., 20, 1–14,
https://doi.org/10.1080/10495390802594206, 2009.
Wang, Y., Zarlenga, D. S., Paape, M. J., and Dahl, G. E.: Recombinant
bovine soluble CD14 sensitizes the mammary gland to lipopolysaccharide.
Vet. Immunol. Immunop., 86, 115–124, https://doi.org/10.1016/S0165-2427(02)00021-1, 2002.
Wang, Y., Zarlenga, D. S., and Paape, M. J.: U.S. Patent No. 6,984,503. Washington, DC: U.S. Patent and Trademark Office, US6984503B1 – Use of recombinant bovine CD14 in the treatment and prevention of coliform mastitis in dairy cows – Google Patents, 2006.
Weigel, K. A. and Shook, G. E.: Genetic selection for mastitis
resistance, Vet. Clin., 34, 457–472, https://doi.org/10.1016/j.cvfa.2018.07.001,
2018.
Wentao, M. A., Yi, W. A. N. G., Fei, G. A. O., Mengxia, N. I. N. G., Ahua,
L. I. U., Yanyan, L. I., and Dekun, C. H. E. N.: Development of a
monoclonal antibody against bovine α-casein to evaluate functional
status of mammary epithelial cells during mastitis, 25, 445–450,
https://doi.org/10.9775/kvfd.2018.20897, 2019.
Whitfield, C. and Trent, M. S.: Biosynthesis and export of bacterial
lipopolysaccharides, Ann. Rev. Biochem., 83, 99–128,
https://doi.org/10.1146/annurev-biochem-060713-035600, 2014.
Williamson, J. H., Woolford, M. W., and Day, A. M.: The prophylactic effect
of a dry-cow antibiotic against Streptococcus uberis, New Zeal. Vet. J., 43, 228–234,
https://doi.org/10.1080/00480169.1995.35898, 1995.
Wu, T., Wang, C., Ding, L., Shen, Y., Cui, H., Wang, M., and Wang, H.:
Arginine relieves the inflammatory response and enhances the casein
expression in bovine mammary epithelial cells induced by
lipopolysaccharide, Med. Inflamm., 2016, 9618795, https://doi.org/10.1155/2016/9618795, 2016.
Wu, J., Niu, P., Zhao, Y., Cheng, Y., Chen, W., Lin, L., and Xu, Z.:
Impact of miR-223-3p and miR-2909 on inflammatory factors IL-6, IL-1ß,
and TNF-α, and the TLR4/TLR2/NF-κB/STAT3 signaling pathway
induced by lipopolysaccharide in human adipose stem cells, PLoS One, 14, e0212063,
https://doi.org/10.1371/journal.pone.0212063, 2019.
Wu, Z., Zhang, Z., Lei, Z., and Lei, P.: CD14: Biology and role in the
pathogenesis of disease, Cytokine Growth Factor Rev., 48, 24–31,
https://doi.org/10.1016/j.cytogfr.2019.06.003, 2019.
Youngerman, S. M., Saxton, A. M., Oliver, S. P., and Pighetti, G. M.:
Association of CXCR2 polymorphisms with subclinical and clinical mastitis in
dairy cattle, J. Dairy Sci., 87, 2442–2448,
https://doi.org/10.3168/jds.S0022-0302(04)73367-6, 2004.
Zadoks, R. N., Allore, H. G., Barkema, H. W., Sampimon, O. C., Wellenberg,
G. J., Gröhn, Y. T., and Schukken, Y. H.: Cow-and quarter-level risk
factors for Streptococcus uberis and Staphylococcus aureus
mastitis, J. Dairy Sci., 84, 2649–2663,
https://doi.org/10.3168/jds.S0022-0302(01)74719-4, 2001.
Zhao, F. F., Wu, T. Y., Wang, H. R., Ding, L. Y., Ahmed, G., Li, H. W.,
and Shen, Y. Z.: Jugular arginine infusion relieves
lipopolysaccharide-triggered inflammatory stress and improves immunity
status of lactating dairy cows, J. Dairy Sci., 101, 5961–5970,
https://doi.org/10.3168/jds.2017-13850, 2018.
Zhao, X. and Lacasse, P.: Mammary tissue damage during bovine mastitis:
causes and control, J. Animal Sci., 86, 57–65,
https://doi.org/10.2527/jas.2007-0302, 2008.
Zhang, Z., Li, X. P., Yang, F., Luo, J. Y., Wang, X. R., Liu, L. H., and Li, H. S.: Influences of season, parity, lactation, udder area, milk yield,
and clinical symptoms on intramammary infection in dairy cows, J. Dairy Sci., 99,
6484–6493, https://doi.org/10.3168/jds.2016-10932, 2016.
Short summary
This publication aims to describe the physiology of the mammary gland and its immune mechanisms and to approximate their connection with potential mastitis resistance genes. It describes various options for mastitis elimination and focuses on genetic selection and a closer specification of resistance genes to mastitis.
This publication aims to describe the physiology of the mammary gland and its immune mechanisms...