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Abstract. Mastitis is one of the most important diseases of the mammary gland. The increased incidence of this
disease in cows is due to the breeding of dairy cattle for higher yields, which is accompanied by an increased
susceptibility to mastitis. Therefore, the difficulty involved with preventing this disease has increased. An integral
part of current research is the elimination of mastitis in order to reduce the consumption of antibiotic drugs,
thereby reducing the resistance of microorganisms and decreasing companies’ economic losses due to mastitis
(i.e. decreased milk yield, increased drug costs, and reduced milk supply). Susceptibility to mastitis is based on
dairy cows’ immunity, health, nutrition, and welfare. Thus, it is important to understand the immune processes
in the body in order to increase the resistance of animals. Recently, various studies have focused on the selection
of mastitis resistance genes. An important point is also the prevention of mastitis. This publication aims to
describe the physiology of the mammary gland along with its immune mechanisms and to approximate their
connection with potential mastitis resistance genes. This work describes various options for mastitis elimination
and focuses on genetic selection and a closer specification of resistance genes to mastitis. Among the most
promising resistance genes for mastitis, we consider CD14, CXCR1, lactoferrin, and lactoglobulin.

1 Introduction

A new direction in breeding practice should be the resilience
of cows; this should focus on reproduction and morphology,
especially udders and hooves, allowing for an increased pro-
duction age and improving the welfare of the animals. Cow
resistance is the ability to maintain normal production, fer-
tility, and health, even under changing environmental con-
ditions, such as sudden temperature fluctuations, changes in
feed composition and quantity, or exposure and infectious
agents (Poppe et al., 2020).

Direct annual economic losses per cow in the event of
clinical mastitis range from EUR 115.4 to EUR 193. These
costs include the increased need for veterinary treatment and
medicines, breeder’s time, discarded milk, and increased cow
culling (Krupova et al., 2019).

In a dairy herd, it is possible to find healthy cows with
high production and cows with one or more infected udder
quarters during every lactation. This variability suggests that

the incidence and prevalence of mastitis depends on differ-
ences in bovine mammary gland susceptibility to intramam-
mary infection (Bannerman et al., 2008). Many factors af-
fect mammary infection, including parity, nutrition, stage of
lactation, milk production, breed, and genes (Zadoks et al.,
2001; Ogorevc et al., 2009; Zhang et al., 2016; Hamel et al.,
2021).

The severity of the inflammation of the mammary gland
is influenced by invasive microorganisms and the subsequent
immune response (Pighetti and Elliott, 2011; Gogoi-Tiwari
et al., 2017). Some cows show greater or lesser suscepti-
bility and sensitivity to the same infectious pathogen, and
the incidence of mastitis also varies depending on the stage
of lactation (initial and stable lactation period) (Burvenich
et al., 2000). The speed, strength, and duration of the im-
mune reaction and the susceptibility to disease are critically
linked to the animal’s genetic background (Pighetti and El-
liott, 2011; Bobbo et al., 2019). The results of endocrine and
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genetic studies can lead to a better understanding of the sus-
ceptibility to mastitis (Weigel and Shook, 2018; Miles and
Huson, 2021). However, the task of effectively integrating
information from molecular and quantitative genetics into
existing breeding programmes remains (García-Ruiz et al.,
2016). Genetic selection of mastitis-resistant cows could be-
come an important alternative for the prophylaxis of masti-
tis in the future (Burvenich et al., 2000; Weigel and Shook,
2018).

2 Natural defence mechanisms of the mammary
gland against infection

The first line of defence of the mammary gland against infec-
tion includes the udder and teat morphology, milking speed,
innate immunity, and the mechanical and antimicrobial teat
canal barrier, through which bacteria must penetrate to cause
intramammary infection (Burvenich et al., 2000; Rainard and
Riolett, 2006; Günther and Seyfert, 2018). The first defensive
cells have various basic functions to maintain tissue integrity
in health and disease (Günther and Seyfert, 2018). Teat
sphincters isolate the interior of the mammary gland from
the external environment and prevent the passage of exter-
nal contaminants and microorganisms. Damage to this struc-
ture is accompanied by an increased incidence of mastitis
(Blowey and Edmondson, 2010). The teat canal is lined with
folds of keratinized skin epidermis covered by a thin layer
of lipid-esterified and non-esterified fatty acids (myristic,
palmitoleic, and linoleic acids). Keratin and the lipid-lined
teat canal have antibacterial properties, which (along with
the teat plug) provide another physical barrier, preventing
bacterial migration into the mammary cistern (Sordillo and
Streicher, 2002; Blowey and Edmondson, 2010; Senthilku-
mar et al., 2020). Certain keratin-associated cationic proteins
may bind to pathogenic mastitis microorganisms, thereby in-
creasing their sensitivity to osmolarity modification (Paulrud,
2005). For this reason, the teat canal is considered to be an
important barrier against intramammary infection.

The inner surface of the mammary gland is covered by
epithelial cells, which play an essential role in early inter-
actions between a pathogen and the host (Derakhsani et al.,
2018b). Their task is to create a final barrier between the ex-
ternal environment and the inside of the body (Korhonen et
al., 2000). Epithelial cells express toll-like receptors (TLRs)
that are responsible for the initial identification of invasive
pathogens (Rainard and Riolett, 2006; Deb et al., 2013). The
TLR family of genes contains members 1–10 and allows in-
dividual cells to recognize bacterial, viral, and dangerous sig-
nals (Khan et al., 2019).

Within the mammary gland, mastitis-causing microor-
ganisms are recognized primarily by toll-like receptors
(TLRs) such as TLR2 and TLR4, which are expressed
by epithelial cells (Rainard and Riolett, 2006; Ezz et al.,
2019). The activation of TLRs leads to a cascade of reac-

tions: the release of the transcription factor, nuclear factor-
κB, which is subsequently translocated to the nucleus and
regulates the expression of many pro-inflammatory sig-
nalling molecules necessary to initiate a mammary im-
mune response. These reaction molecules include cytokine
tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β),
interleukin-6 (IL-6), and interleukin-12 (IL-12); chemokines
IL-8 and RANTES (regulated upon activation, normal T
cells expressed and secreted); oxygen radicals; tissue fac-
tors; and anti-inflammatory factors IL-10 and transforming
growth factor (TGF) (Boudjellab et al., 2000; Bannerman et
al., 2004b). Furthermore, epithelial cells secrete two impor-
tant components of innate immunity, complement factor C3
and lactoferrin (Hagiwara et al., 2003; Griesbeck-Zilch et al.,
2009).

Monocytes and phagocytic cells produce cytokines such
as tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6),
and interleukin-8 (IL-8). L- Lipopolysaccharides (LPSs) are
the main component of the cell wall of Gram-negative bac-
teria, which are released during bacterial cell division or
death. LPSs induce the release of cytokines from mononu-
clear phagocytes. The overexpression of such cytokines can
be implicated in mediating acute septic shock (Boudjellab et
al., 2000; Ohtsuka et al., 2001). IL-8 is a chemoattractant of
cytokines that activates polymorphonuclear neutrophils (Wu
et al., 2019a). The most important effectors in the bovine
mammary immune system are somatic cells, including ep-
ithelial cells from the gland and leukocytes from the blood
(Li et al., 2014). Leukocytes migrate from the bloodstream in
varying numbers, depending on the corresponding pathogen
(Sordillo and Streicher, 2002; Oviedo-Boyso et al., 2007).

Macrophages naturally occur in the mammary gland
and, along with neutrophils, are mainly activated dur-
ing its inflammation (Langrová et al., 2005; Bassel and
Caswell, 2018). Macrophages predominate in healthy mam-
mary glands and signal the invasion of pathogenic microor-
ganisms (Paape et al., 2002; Li et al., 2014). During the
invasion of pathogens into the mammary gland, they are
detected mainly through monocytes/macrophages, although
also through mammary gland epithelial cells, which re-
lease chemoattractants, controlling the migration of poly-
morphonuclear neutrophil leukocytes (neutrophils) to the in-
flammatory region (Paape et al., 2002; Langrová et al., 2005;
Li et al., 2014; Bassel and Caswell, 2018). As already men-
tioned, the level of neutrophils in the blood of cows in the
puerperal period is highly heritable and is associated with
susceptibility to clinical mastitis (Burvenich et al., 2000;
König and May, 2019).

Macrophages are mainly activated by bacterial
lipopolysaccharides (LPSs) and interferon-γ (IFN-γ )
(Toman et al., 2009; Elazar et al., 2010). Bacterial LPSs
(mainly Gram-negative bacteria) induce an inflammatory
response (Bannerman et al., 2003; He et al., 2017) initiated
by LPS/TLR4 signalling (Li et al., 2015) by alveolar
macrophages (Persson et al., 1996). This signalling induces
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an increased release of inflammatory cytokines to prompt
polymorphonuclear neutrophil (PMN) migration into the
mammary gland (Persson et al., 1996; Zhao and Lacasse,
2008; Bassel and Caswell, 2018). In the mammary gland,
the total number of somatic cells and the basal PMN level in
milk increases by 5 %–25 % to approximately 90 % (Leitner
et al., 2000).

Amino acids, especially methionine (Met) and arginine
(Arg), are important for functional immunity and recovery
during infectious diseases. However, stress or inflammation
reduces their intake (Wu et al., 2016). Studies have reported
more effective pro-inflammatory responses elicited by the
LPS challenge, with increased Arg supply (Wu et al., 2016;
Zhao et al., 2018).

The second line of defence consists of a network of mem-
ory cells and immunoglobulins reacting with the first line of
defence. An important factor in the rapid and adequate re-
sponse of the organism to infection is the regulation of the
immune response. Rapid elimination of pathogenic microor-
ganisms in the mammary gland is essential, whereby dam-
age to the mammary gland by bacterial toxins and oxidative
products released by PMNs is minimized. The number of cir-
culating PMNs that affects the susceptibility of dairy cows to
mastitis is highly hereditary and is closely related to their sus-
ceptibility to clinical mastitis. In particular, the period around
birth is critical, during which time the number of circulating
PMNs in the blood is reduced (Paape et al., 2002; Vangroen-
weghe, 2005).

Macrophages are the key cells of innate immunity, and
their main role is regulation. They are multifunctional cells
involved in the management of hematopoiesis, homeostasis,
wound healing, the destruction of microorganisms and the
regulation of inflammation (through the synthesis of acute
tissue proteins), the removal of dead cells and tissue regener-
ation, cytotoxic reactions, antigen presentation to T lympho-
cytes, response regulation of T lymphocytes, and the regula-
tion of tolerance (Toman et al., 2009; Sharifi et al., 2019).

Although their bactericidal competence appears to be lim-
ited, they actively phagocytize, indicating that they can rec-
ognize bacteria. Opsonin receptors (the IgG1 Fc receptor
and the IgG2 Fc receptor) have been confirmed on milk
macrophages. Macrophages are stimulated by Escherichia
coli lipopolysaccharides (LPSs) and respond by secreting in-
terleukins (IL-1). Macrophages in cattle express a gene that
produces the cluster of differentiation 14 (CD14) protein. It
is deposited on the surface of the membrane as membrane-
bound CD14 (mCD14) or excreted into the environment.
“Resident” neutrophils could also be involved in the sig-
nalling of bacterial elements, although this signalling has not
been demonstrated. Both cell types can release chemotactic
and inflammatory mediators that seek out and recognize bac-
teria (Paape et al., 2002; Rainard and Riolett, 2006; Gilbert
et al., 2013).

Monocytes and neutrophils penetrate from the capillaries
into the tissues by diapedesis and adhere to the endothelium

(Reece, 2011; Rudziak et al., 2019). In tissues, monocytes
are then able to differentiate into macrophages. After phago-
cytosis of apoptotic neutrophils, anti-inflammatory cytokines
(TGF-β and IL-10) are produced by macrophages. The pro-
cess of gene transcription of anti-inflammatory cytokines is
inhibited, and the process of resolving inflammation begins
(Toman et al., 2009).

Cytokines are low-molecular-weight proteins or glycopro-
teins (Su et al., 2016). They arise from the activity of cells
of various tissues and organs, although primarily from cells
of the immune system. Cytokines serve to communicate be-
tween cells and form the so-called “intercellular information
network”. In certain microenvironments, there is a greater
number of cytokines that can interact (e.g. potentiate, in-
hibit, and induce synthesis of other cytokines). The biolog-
ical activity of cytokines is the result of mutual current lo-
cal concentration, target cell type, 19 regulatory factors, ge-
netic predisposition, current individual health, age, nutrition,
sex, and drugs, among others. Cytokines are classified into
three classes according to their effects on interferon-α (INF-
α; antiviral and antiproliferative effect), interferon-γ (INF-
γ ; immunostimulatory effect), and interleukins (IL-2; T-cell
stimulation). IFN-γ is the major cytokine of the immune re-
sponse. It is involved in the activation of cytotoxic T cells,
natural killer (NK) cells, and macrophages (Mladosievicova
et al., 2015).

Both bacterial host factors and the immune response con-
tribute to tissue epithelial damage. With the increased migra-
tion of immune cells into the mammary gland and the dis-
ruption of the blood–milk barrier, there is greater damage to
the mammary gland epithelium. The degradation of the ex-
tracellular matrix can lead to the death of epithelial cells. In
addition, polymorphonuclear neutrophils and macrophages
can damage mammary tissue by releasing reactive intermedi-
ates of oxygen and proteolytic enzymes. In vitro and in vivo
studies have suggested that the use of antioxidants and other
preservatives in mastitis control programmes helps alleviate
secretory cell damage, thereby reducing subsequent milk loss
(Zhao and Lacasse, 2008).

3 Prevention of mastitis

It is important to focus on preventing the development of
mastitis, both clinical and subclinical. Among the options
for prevention and the procedure of minimizing inflamma-
tion of the mammary gland, we include (1) the minimization
of bacteria in the environment by maintaining environmental
hygiene, especially during the pre-and postpartum periods,
which are the periods of the highest risk of intramammary
infection with coliform bacteria (Herrera, 2009); and (2) im-
proving nutrition, housing, and the environment, and, thus,
minimizing the stress, the negative-energy balance, and the
physiological imbalance on dairy cattle (Pyorala, 2002; Ing-
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vartsen and Moyes, 2013; Esposito et al., 2014; Gombart et
al., 2020).

One means of preventing mastitis is vaccination, as it
strengthens the immune system of animals and reduces the
incidence of mastitis; moreover, if disease occurs, vaccina-
tion can prevent a severe course (Herrera, 2009; Rainard et
al., 2018). Vaccination is the controlled exposure of a host
defence system to a pathogen or toxin in an attenuated form
to teach the immune system to recognize specific antigens for
that pathogen. This speeds up the immune system response
if a particular antigen reappears, preventing the pathological
course of the infection (Erskine, 2012). However, vaccine de-
velopment has been difficult because the immune response to
a natural infection does not effectively protect against subse-
quent infection. In recent years, reports have been published
describing prototype vaccines against Streptococcus uberis,
Streptococcus agalactiae, Escherichia coli, and Staphylococ-
cus aureus. These vaccines are based on either the use of a
bacterial extract that contains antigens from the most com-
mon bacterial serotypes or that contains only cell fragments
(antigens) that may or may not be conjugated to carriers to
increase their immunological efficacy (Talbot and Lacasse,
2005; Rainard et al., 2018). Vaccination does not prevent
intramammary infection. The immunization performed does
not reduce the prevalence of Gram-negative bacterial infec-
tion, but it does reduce the incidence of clinical mastitis and
the severity of the disease. As for the difference between vac-
cinated and non-vaccinated cows, 66.7 % of coliform clini-
cal intramammary infections were reported in unvaccinated
cows, whereas they were reported in only 20 % of vaccinated
cows (Hogan and Smith, 2003).

There are also available commercial monovalent (against
one pathogen) and polyvalent (against more than one
pathogen) vaccines produced against E. coli and coliform
bacteria, for example ENVIRACOR J-5, ENDOVAC-Dairy
coliform vaccine, J-VAC, and STARTVAC (Guccione et al.,
2017). Another type of vaccine is the so-called autogenous
vaccine, which is prepared from native strains isolated from
cows in the herd suffering from mastitis and then applied to
the herd. These vaccines are mainly produced against the S.
aureus and S. uberis pathogens. These vaccines are not com-
mercial; however, commercial autogenous mastitis vaccines
are also available, e.g. BESTVAC and IDT (Ismail, 2017).

The next type of vaccine against mastitis is the so-called
pegbovigrastim (commercially Imrestor) (Ruiz et al., 2017).
This vaccine contains granulocyte colony-stimulating factor
(G-CSF). G-CSF is a cytokine responsible for neutrophil
maturation and the stimulation of neutrophil release from
bone marrow stores (Mayadas et al., 2014). This vaccine is
used in the transition period, during which time the number
of neutrophils in the blood is reduced. The recommended ap-
plication is 7 d before the expected delivery and on the day
of delivery. Studies have shown that there is an increase in
the number of neutrophils, which remain elevated even after
calving (Ruiz et al., 2017).

4 Genetic selection

It is generally known that there is a positive genetic correla-
tion between milk production and the incidence of mastitis
(as well as somatic cell scores – SCSs), estimated to range
from 0.24 to 0.55 (mean of 0.43). In the literature, the ge-
netic correlation between milk production and clinical mas-
titis ranges from slightly negative to 0.66, with the average of
seven studies being 0.30 (Heringstad et al., 2000; Vallimont
et al., 2009; Chegini et al., 2018).

If the influence of mastitis is ignored in the breeding pro-
gramme, the emphasis on milk production will negatively af-
fect mastitis resistance. Studies have shown that ignoring the
effects of mastitis in the steaming plan results in a genetic
increase in mastitis cases of 0.02 per cow per year, assum-
ing a genetic correlation between mastitis and milk yield of
0.30. Therefore, the inclusion of resistance in breeding pro-
grammes is needed in order to suppress undesirable correla-
tions resulting from selection based only on milk production.
The choice to increase mastitis resistance contributes to re-
ducing production costs and maximizing overall economic
profit (Heringstad et al., 2000). There is considerable genetic
variation for clinical mastitis. Health records relating to ud-
der disease may be used to genetically evaluate cow health
(Vallimont et al., 2009). Mastitis is the most common reason
for the use of antibiotics in lactating dairy cows. Genetic im-
provement in mastitis resistance or vaccination against mas-
titis can reduce the need for treatment (and, consequently, the
use of antibiotics) as well as reducing the risk of bacterial re-
sistance to antibiotics. The high consumption of antibiotics is
a global problem (Heringstad et al., 2000; Tiwari et al., 2013;
Cheng and Han, 2020).

The mapping of genes and variants involved in innate
immune responses is essential in order to understand this
inflammatory disease and to identify the potential genetic
markers of mastitis resistance. The benefit of the subsequent
generation of dairy cows would be to obtain favourable alle-
les promoting greater resistance to infection and a reduction
in antibiotic use (Alain et al., 2009; Mahmood et al., 2017).

Mastitis resistance is a complex system involving a vari-
ety of pathways, under the influence of a large number of
candidate genes (Karthikeyan et al., 2016). Low heritability
(Pighetti and Elliott, 2011), high environmental impact, and
differences in farm management make it difficult to identify
the linkage between genetic variants and mastitis resistance.
These causes have led researchers to attempt the identifica-
tion of genes and genetic variability related to mastitis resis-
tance in dairy cattle in individual studies (Sahana et al., 2014;
Tiezzil et al., 2015).

Researchers have focused on identifying mastitis-related
genes through activities such as pathogen recognition, leuko-
cyte recruitment, migration, elimination, and pathogen dif-
ferentiation. For mastitis resistance, it is difficult to identify
candidate genes that determine traits due to the polygenic
nature of the disease. Complex properties are mainly con-
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trolled by minor genes (many low-effect genes), compared
with a limited number of major genes (Hayes et al., 2010;
Karthikeyan et al., 2016).

A database of candidate bovine genes and genetic mark-
ers for milk production and mastitis has been compiled to
provide an integrated research tool, containing a variety of
research and information supporting a genomic approach to
lactation study, udder development, and health. The database
includes 943 genes and genetic markers involved in the de-
velopment and function of the mammary gland (Ogorevc et
al., 2009).

5 Lactoferrin

Lactoferrin (LTF) is one of the minor genes that may affect
the health of the mammary gland. Dairy cows with clinical
and subclinical mastitis show an average higher concentra-
tion of lactoferrin in milk than healthy cows (Musayeva et
al., 2018). These data correlate with the SCS (Hagiwara et
al., 2003). Researchers state that there is a possible relation-
ship between LTF and dairy mastitis (Soyeurt et al., 2012;
Mohammadnezhad et al., 2021).

Research also suggests that the LTF AA genotype may
be associated with increased resistance to intramammary in-
fections in Awassi sheep (Alekish et al., 2019). Sharma et
al. (2015) report that the LTF gene polymorphism showed
a significant association with the somatic cell count (SCC).
Dairy cows with genotypes GG and GC showed a higher
SCC than cows with genotype CC. Further research on dairy
cows has shown that the CC genotype is found with a fre-
quency of 0.33; dairy cows with subclinical mastitis showed
both the GG (0.17) and GC (0.50) genotype, and cows with
clinical mastitis showed the GC genotype.

Lactoferrin is a multifunctional iron-binding glycoprotein.
It is synthesized in the epithelium of the mammary gland and
has bactericidal and bacteriostatic effects (Huang et al., 2012;
Shimazaki and Kawai, 2017). It is contained in body secre-
tions – milk and fluids of the intestinal tract – where it rep-
resents an important part of the host’s first line of defence
(Harmon and Newbould, 1980). Lactoferrin is contained in
secondary granules and large granules of neutrophils. It is
released in the infected mammary gland, where it makes up
about 5 % of milk during acute inflammation (Harmon and
Newbould, 1980; Shimazaki and Kawai, 2017), and ensures
the migration, maturation, and function of immune cells (Shi-
mazaki and Kawai, 2017).

6 Keratin 5

Keratin 5 (KRT5) is involved in the formation of the teat plug.
Teat sphincters isolate the inside of the mammary gland from
the outside environment and prevent the passage of exter-
nal contaminants and microorganisms. Damage to this struc-
ture is accompanied by an increased incidence of mastitis

(Blowey and Edmondson, 2010). The teat canal is lined with
folds of keratinized skin epidermis, covered with a thin layer
of lipids of esterified and non-esterified fatty acids (myristic,
palmitoleic, and linoleic acids). Keratin and the lipid-lined
teat canal have antibacterial properties, which provide (along
with the plug) another physical barrier, preventing bacterial
migration into the mammary cistern (Sordillo and Streicher,
2002; Blowey and Edmondson, 2010). In addition, certain
keratin-associated cationic proteins may bind to pathogenic
microorganisms of mastitis, increasing their sensitivity to os-
molarity modifications (Paulrud, 2005).

Clinical mastitis arising during the dry period was shown
to be most common (97 %) in quarters with open teat canals
(Williamson et al., 1995). During lactation, dilatation of the
teat canal sphincter after milking may compromise the ani-
mal’s first line of immune defence, thereby increasing their
susceptibility to udder invasion and colonization by a wide
range of microorganisms from various sources (Jones and
Bailey, 2009). For this reason, the teat canal and keratin plug
are considered important barriers against intramammary in-
fection (Freu et al., 2020).

There are many microorganisms, which are a potential
source of mammary gland infection, on the skin surface of
the teat and keratin from the teat canal (Nickerson, 1991).
The results in the literature support the plausibility of the
theory that the reduction in SCSs is due to increased ker-
atin synthesis and improved immune defence (Jones, 1995).
Calcium is a factor that increases differentiation and pro-
motes the expression of differentiation-specific keratin genes
(Paulrud, 2005; Bikle et al., 2012).

The mammary gland becomes infected by environmen-
tal pathogens, especially during the dry period (Bradley and
Green, 2004). The susceptibility of the udder during this pe-
riod is attributed to the failure of the formation of the ker-
atin plug in the teat canal in the early stage of the dry pe-
riod or its loss in the late stage of the dry period (Williamson
et al., 1995; Bradley and Green, 2004; Paulrud, 2005). The
resulting infections during the dry period are especially pro-
nounced after calf birth. It is reported that 50 % of environ-
mental mastitis diagnosed within 100 d of calving occurred
during the dry period (Bradley and Green, 2000, 2004).

At the moment of teat canal disruption/crossing by inva-
sive microorganisms, especially bacteria, access to the milk
is gained despite a wide range of innate and acquired im-
mune responses (Sordillo and Streicher, 2002). The intra-
mammary environment provides the bacteria with a suitable
environment, as evidenced by the ability of most mastitis
pathogens to proliferate rapidly despite the inflammatory re-
sponses of the immune system (Rainard, 2017; Derakhshani
et al., 2018a).
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7 Interferon-γ receptor 2 (IFNGR2)

Interferon, induced during mastitis, is secreted by helper
CD4+ and CD8+ lymphocytes, and promotes cell-mediated
immunity through the increased phagocytic and antigenic ca-
pacity of macrophages (Bannerman, 2009). Interferon-γ re-
ceptor 2 is an important cytokine that mediates the inflam-
matory response during infection (Bannerman, 2009; Pant et
al., 2011; Mann et al., 2019).

Elevated IFNG levels are associated with the onset of in-
tramammary infection (Bannerman et al., 2004a, b; Pant et
al., 2011) Increased IFNG is accompanied by increased pro-
duction of nitric oxide monocytes. Oxidizing molecules are
crucial in the defence against bacteria, although they are con-
currently harmful to host tissues (Burvenich et al., 2003).

8 Lactoglobulin (LGB)

The β-lactoglobulin (BLG) gene is a protein commonly
present in milk at normal pH (Singh and Gallier, 2017).
BLG is a whey protein and member of the lipocalin fam-
ily present in cow’s milk that easily adheres to hydrophobic
molecules. The BLG gene binds iron through siderophores;
thus, it is fundamentally involved in the immune response
in the fight against pathogens in milk (Alim et al., 2015).
Studies have reported that bovine prolactin (PRL) and β-
lactoglobulin are associated with milk quality and the SCC
in dairy breeds (Luhar et al., 2006; Sing et al., 2015). The in-
creased SCC results in a decline in the amount of BLG gene
in milk (Litwińczuk et al., 2011). BLG was highly expressed
in healthy udders; it is one of the major whey proteins of
ruminants: in combination with α-LG, it makes up approx-
imately 14 % of the protein in milk (Coulon et al., 1998;
Kamiński et al., 2007).

BLG antagonizes the LTF gene. However, together they
have antibacterial effects. As a result, their immune mecha-
nisms help protect the mammary gland against bacterial in-
fection (Chaneton et al., 2011; Singh et al., 2014). The BLG
gene has an inhibitory effect on mastitis agents such as Strep-
tococcus spp. and Staphylococcus aureus; thus, it reduces the
rate of spread of infections, thereby contributing to improv-
ing milk quality (Chaneton et al., 2011; Ateya et al., 2016).

Singh et al. (2015) observed that genotypes AB and BB
BLG had a significant (p < 0.05) effect on overall milk yield
and maximum yield compared with genotype AA. Thus,
genotypes AB and BB may be favourable to better milk pro-
duction characteristics. BLG polymorphism has previously
been associated with the SCC in dairy cows (Luhar et al.,
2006). Kriventsov et al. (1975) reported a lower milk micro-
biota in BLG B-expressing animals than in BLG A-expressing
animals; in contrast, Luhar et al. (2006) found that the B al-
lele is associated with mastitis, and Singh et al. (2015) agreed
that the SCC of AA genotype cows is significantly (p < 0.05)
lower than in AB- and BB-genotype cows. Therefore, the AA

group of animals may be favourable in terms of the selection
of animals resistant to mastitis.

9 Casein (CSN)

The most expressed genes in the healthy mammary gland are
β-casein (CSN2), κ-casein (CSN3), α S1 casein (CSN1S1),
and α S2-casein (CSN1S2). β-casein and whey are the two
main protein groups in cows’ milk (Kamiński et al., 2007).
Although CSN1S1 and CSN2 are not the most expressed,
they are still highly expressed in the mastitis mammary gland
(Wentato et al., 2019). These expression values were found to
be lower compared with a healthy mammary gland (Coulon
et al., 1998; Kamiński et al., 2007). In the mastitis mammary
gland, CSN3 genes were not in the highly expressed group. A
possible consequence of the lower expression of these genes
is that the protein content of mastitis cows’ milk would be
reduced, which could have economic consequences (Assels-
tine et al., 2019). Similar results have been reported by Her-
ingstad et al. (2005), who found an antagonistic genetic re-
lationship between clinical mastitis and protein yield. The
percentage of protein and fat correlates positively (0.67); this
means that if the protein content of milk decreases, the per-
centage of fat also decreases, which has a greater impact on
the profitability of cows’ milk (Carlén et al., 2004).

10 CD14

The CD14 gene product is an important part of host innate
immunity. It provides sensitivity to lipopolysaccharides to
individual cell types, such as neutrophils, monocytes, and
macrophages (Wang et al., 2006; Ibeagha-Awemu et al.,
2008; Wu et al., 2019b). The CD14 gene product mediates
host defences against Gram-negative bacterial infections,
provides immunity against viral infections, and determines
the effect of changes in protein expression on the surface of
monocytes and neutrophils in healthy dairy cows. It occurs
on the cell membrane of monocytes and, to a lesser extent, on
the membrane of neutrophils. CD14 ensures the sensitivity of
cells to lipopolysaccharide (LPS), including epithelial cells
and endothelial cells (Wang et al., 2002; Ibeagha-Awemu et
al., 2008; Wu et al., 2019b). LPS, when bound to host mem-
brane proteins such as CD14, causes the release of proinflam-
matory cytokines that recruit neutrophils as an early innate
immune response. Excessive levels of proinflammatory cy-
tokines cause tissue damage and compromise the mammary
gland function (Wall et al., 2009; Ranoa et al., 2013; Wu et
al., 2019b).

There are two forms of the gene product, the membrane-
bound form of mCD14 and the soluble form of sCD14
(Ibeagha-Awemu et al., 2008; Hirsch et al., 2021). sCD14
is thought to be derived from monocytes by direct exocytosis
and from proteolytic cleavage of mCD14 on the cell surface.
Researchers believe that soluble and membrane-bound forms
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of CD14 compete for LPS binding. The result is increased
concentrations of sCD14 modulating humoral and cellular
responses that otherwise elicit when LPS and associated pro-
teins bind to membrane-bound CD14 and interact with TLR4
(Wall et al., 2009; Wu et al., 2019b). It has been shown that
sCD14 and LPS-binding protein (LBP) can bind LPS and
transport it to high-density serum lipoproteins, thereby re-
ducing (detoxifying) serum LPS levels. The protective nature
of sCD14 has been demonstrated in challenge studies in cows
fed exogenous sCD14. Based on the demonstrated ability of
sCD14 to attenuate innate immune responses to LPS expo-
sure, it is hypothesized that increasing the concentration of
sCD14 in the mammary glands would increase the sensitiv-
ity of the immune control and, thus, modulate the immune re-
sponse that acts during mastitis. The concentration of sCD14
can be increased by introducing a transgene encoding sCD14
expressed in mammary epithelium during lactation. Increas-
ing innate immunity against the microorganism by increasing
the recognition of the host immune response of the nucleus of
the conserved molecule to the pathogen (e.g. LPS) would be
less likely to develop antibiotic resistance in microorganisms
(Lee et al., 2003; Wall et al., 2009). Recombinant bovine
sCD14 can increase the sensitivity of mammary epithelial
cells to low LPS concentrations in vivo and in vitro, sug-
gesting that sCD14 plays an important role in initiating host
responses to Gram-negative bacterial infections (Wang et al.,
2002; Ibeagha-Awemu et al., 2008; Védrine et al., 2018).

The main component of the outer membrane of Gram-
negative bacteria, such as E. coli, is LPS (also called endo-
toxins) (Whitfield and Trent; 2014; Sperandeo et al., 2017),
which occupies 75 % of the bacterial surface, with the re-
maining part being made up of proteins (Nikaido, 1987). The
innate immune system is easily prepared to detect LPS and
responds to Gram-negative bacterial infections (Wall et al.,
2009; Faraj et al., 2017). LBP and CD14, among other helper
molecules, facilitate LPS activation of TLR4 and adequate
regulation of proinflammatory cytokine expression, includ-
ing tumour necrosis factor-α (TNF-α) and interleukins (IL-1,
IL-6, and IL-8) (Wall et al., 2009; Rossol et al., 2011; Akhtar
et al., 2020). These cytokines, in turn, contribute to the re-
cruitment and activation of neutrophils, which are among
the first leukocytes to prevent the host from being attacked
by bacteria. Excessive local release of proinflammatory cy-
tokines, including TNF-α, in response to LPS, can cause lo-
cal tissue damage, while excessive systemic release can lead
to toxic shock, which can be fatal in severe cases (Wall et al.,
2009; Akhtar et al., 2020).

During the peripartum period, individual changes in cow
response were noted for Gram-negative and Gram-positive
bacterial infections. Therefore, there are various variations
in CD14 gene sequences that may play an important role in
the presentation of CD14 molecules and, thus, sensitivity to
LPS (Wang et al., 2002; Ibeagha-Awemu et al., 2008; Akhtar
et al., 2020).

SCCs in mammary glands injected with recombinant
sCD14 were increased earlier compared with cows injected
with saline (in the same regions). This was attributed to the
binding of LPS produced by E. coli to sCD14 and the bind-
ing of the LPS/rbosCD14 complex to epithelial cells. This
binding initiated the recruitment of somatic cells to the af-
fected regions and the elimination of E. coli. sCD14 quarters
remained normal compared with the two quarters without its
application. It follows that intramammary injection of sCD14
prevented E. coli infection (Wang et al., 2006; Védrine et al.,
2018).

11 CXCR1

The innate immune response plays an important role dur-
ing bacterial infections. Inherent immune efficacy relies on
the expression of many genes and is associated, inter alia,
with neutrophil activity (Pawlik et al., 2015; Alhussien and
Dang, 2020). The interleukin 8 (IL-8) α receptor, encoded
by the CXCR1 gene, is present on the neutrophil surface and
binds pro-inflammatory IL-8 with high affinity (Teijeira et
al., 2020). Hence, the gene for bovine CXCR1 offers the po-
tential for use as a marker of bovine mastitis. Previous stud-
ies on CXCR1 polymorphism have yielded conflicting results
(Pawlik et al., 2015; Alhussien and Dang, 2020).

Pro-inflammatory cytokines can induce an antimicrobial
response to epithelial cells and ensure the migration of neu-
trophils and dendritic cells to the site of infection (Kolls et
al., 2008; Huang, 2021). As noted above, IL-8 plays an im-
portant role in the migration of neutrophils and other inflam-
matory cells from the blood to the mammary gland (Swain
et al., 2014). In addition, other pathways directly involved
in the immune response (i.e. IL-6 signalling and IL-10 sig-
nalling) are represented overall and in the late phase of the
response (Lewandowska-Sabat et al., 2012).

Increased expression of IL-10 and IL-6 has been reported
at an earlier stage of the response to mammary gland in-
fection. IL-6 regulates cells to control and terminate the
inflammatory response during late-stage mastitis infection
(Lewandowska-Sabat et al., 2012).

Rambeaud and Pighetti (2005) consider that the incidence
of the CC genotype of the CXCR1 gene is accompanied by
impaired neutrophil migration in vitro, which explains the
physiological mechanism of genetic differences in suscepti-
bility to mastitis. In the herd studied, the highest SCC was
more associated with the CXCR1 C allele than with the G
allele, although the differences between genotypes were in-
significant.

A study by Pawlik et al. (2015) reported that this polymor-
phism did not affect sensitivity to mastitis, with respect to
SCS or S. aureus. The frequency of the C allele in the popu-
lation was relatively low (i.e. 28.73 %). In other studies, the
frequency of the CXCR1 C allele ranged between 36 % and
67 % for Holstein cattle. Only two cows carried the CXCR1
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CC genotype; this could mean that the C allele of the CXCR1
gene was excluded from the herd studied.

One should bear in mind that a low daily SCC test is not
necessarily associated with a reduced incidence of mastitis.
As mentioned earlier, the CC variant of the CXCR1 polymor-
phism is associated with impaired neutrophil migration, and
this could mean that a lower SCC day in cows of this geno-
type is associated with chronic mastitis due to low neutrophil
counts and/or impairment in somatic cells. Not all previous
studies have linked the C allele of CXCR1 to susceptibility to
mastitis (Pawlik et al., 2015). Galvão et al. (2011) found that
cows with the CXCR1 CC or CG genotype have a lower in-
cidence of clinical mastitis compared with the GG genotype,
which contradicts the results of Youngerman et al. (2004),
who did not find a significant association between clinical
mastitis, SCC, or SCCs and the CXCR1 genotype. However,
Youngerman et al. (2004) did find an association between
higher SCS and the heterozygous GC genotype compared
with the GG genotype in the Holstein cow population. In-
terestingly, Holstein cows with a high SCS have been linked
with reduced daily fat production in a farm study (Younger-
man et al., 2004).

12 Others genes

A total of 117 candidate single-nucleotide polymorphisms
(SNPs) and 27 quantitative trait loci (QTLs) associated with
mastitis resistance within a population of phenotypically
well-characterized dairy cattle were identified. The three
QTLs most suggestive of genome-wide significance are lo-
cated on BTA26 and overlap the SORCS3 gene and a previ-
ously identified QTL for teat length (Kurz et al., 2019).

SNPs UA-IFASA-8493 and ARS-BFGL-NGS-5022,
found on BTA14 and BTA15, are found within stathmin-like
2 (STMN2) and the nuclear mitotic apparatus genes for
protein 1 (NUMA1). They are considered to be new poly-
morphisms related to SCSs (Iung et al., 2015). Stathmin is
involved in cell-cycle regulation (Rubin and Atweh, 2004).

ARS-BFGL-NGS-117704 is located on BTA6, and is an
SNP associated with the SCS (Meredith et al., 2012; Sahana
et al., 2013). This region of the chromosome corresponds to
the interleukin 8 (IL8) gene, which is involved in the immune
response, especially in the early stages, against bacterial in-
vasion (Hedrick et al., 1999).

These SNPs were located in quantitative trait locus (QTL)
mapping studies on BTA5, BTA6, BTA8, BTA11, BTA18,
and BTA23 were frequently associated with the SCC (Lund
et al., 2008; Hu et al., 2019).

13 Conclusions

Dairy immunity is currently one of the most important points
of research in the context of global pressure to reduce the
consumption of antibiotics. It occurs through a variety of

processes and signals. Therefore, it is currently a scientific
challenge to reveal the most important genes and gene com-
binations in order to ensure high resistance among animals.
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