Articles | Volume 60, issue 1
https://doi.org/10.5194/aab-60-27-2017
https://doi.org/10.5194/aab-60-27-2017
Original study
 | 
13 Mar 2017
Original study |  | 13 Mar 2017

SIRT1 gene polymorphisms associated with carcass traits in Luxi cattle

Guifen Liu, Hongbo Zhao, Xiuwen Tan, Haijian Cheng, Wei You, Fachun Wan, Yifan Liu, Enliang Song, and Xiaomu Liu

Related authors

Regulation of microRNA-33, SREBP and ABCA1 genes in a mouse model of high cholesterol
Xianglun Zhang, Hongbo Zhao, Qingkai Sheng, Xiaomu Liu, Wei You, Haichao Lin, and Guifen Liu
Arch. Anim. Breed., 64, 103–108, https://doi.org/10.5194/aab-64-103-2021,https://doi.org/10.5194/aab-64-103-2021, 2021

Related subject area

Subject: DNA markers and gene expressions | Animal: Cattle
Mitochondrial DNA diversity of D-loop region in three native Turkish cattle breeds
Eymen Demir, Nina Moravčíková, Bahar Argun Karsli, Radovan Kasarda, Ibrahim Aytekin, Umit Bilginer, and Taki Karsli
Arch. Anim. Breed., 66, 31–40, https://doi.org/10.5194/aab-66-31-2023,https://doi.org/10.5194/aab-66-31-2023, 2023
Short summary
Assessment of the association of the MOGAT1 and MOGAT3 gene with growth traits in different growth stages in Holstein calves
Gökhan Gökçe and Mervan Bayraktar
Arch. Anim. Breed., 65, 301–308, https://doi.org/10.5194/aab-65-301-2022,https://doi.org/10.5194/aab-65-301-2022, 2022
Short summary
Genetic polymorphism of Pit-1 and CSN3 genes in Holstein calves and its associations with calf birth weight
Ismail Fındık and Memis Özdemir
Arch. Anim. Breed., 65, 285–292, https://doi.org/10.5194/aab-65-285-2022,https://doi.org/10.5194/aab-65-285-2022, 2022
Short summary
The relationships between κ-casein (CSN3) gene polymorphism and some performance traits in Simmental cattle
Hamiye Ünal and Sinan Kopuzlu
Arch. Anim. Breed., 65, 129–134, https://doi.org/10.5194/aab-65-129-2022,https://doi.org/10.5194/aab-65-129-2022, 2022
Short summary
Allele-specific polymerase chain reaction for the discrimination of elite Korean cattle associated with high beef quality and quantity
Wonhee Lee, Insik Nam, Daehyun Kim, Kukdong Kim, and Yoonseok Lee
Arch. Anim. Breed., 65, 47–53, https://doi.org/10.5194/aab-65-47-2022,https://doi.org/10.5194/aab-65-47-2022, 2022
Short summary

Cited articles

Bordone, L., Motta, M. C., Picard, F., Robinson, A., Jhala, U. S., Apfeld, J., McDonagh, T., Lemieux, M., McBurney, M., Szilvasi, A., Easlon, E. J., Lin, S. J., and Guarente, L.: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells, PLoS Biol., 4, e1002346, https://doi.org/10.1371/journal.pbio.1002346, 2006.
Botstein, D., White, R. L., Skolnick, M., and Davis, R. W.: Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 32, 314–331, 1980.
Cakir, I., Perello, M., Lansari, O., Messier, N. J., Vaslet, C. A., and Nillni, E. A.: Hypothalamic Sirt1 Regulates Food Intake in a Rodent Model System, PloS One, 4, 8322, https://doi.org/10.1371/journal.pone.0008322, 2009.
Civelek, M., Hagopian, R., Pan, C., Che, N., Yang, W. P., Kayne, P. S., Saleem, N. K., Cederberg, H., Kuusisto, J., Gargalovic, P. S., Kirchgessner, T. G., Laakso, M., and Lusis, A. J.: Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits, Hum. Molec. Gen., 22, 3023–3037, 2013.
Download
Short summary
The main contribution of our paper is the identification of several SNPs of the SIRT1 gene in beef cattle and their relationships to carcass traits such as weight and meat percentage. We believe that this contribution is theoretically and practically relevant because beef cattle are bred to maximize carcass quality, but traits that lead to carcass quality are difficult to assess in vivo. We provide a method to select individuals for breeding based on genetic propensity for meat production.