Articles | Volume 68, issue 4
https://doi.org/10.5194/aab-68-629-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-68-629-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pomegranate peel supplementation improves performance and lipid metabolism in laying hens
Şaziye Canan Bölükbaşı
Department of Animal Science, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
Hilal Ürüşan
CORRESPONDING AUTHOR
Department of Plant and Animal Production, Vocational School of Technical Sciences, Atatürk University, Erzurum, Türkiye
Related authors
Şaziye Canan Bölükbaşı, Hilal Ürüşan, and Betül Apaydın Yıldırım
Arch. Anim. Breed., 66, 225–232, https://doi.org/10.5194/aab-66-225-2023, https://doi.org/10.5194/aab-66-225-2023, 2023
Short summary
Short summary
The effect of adding propolis to high-energy feed for laying hens on performance values and ratio of liver fat was investigated. High-energy feed adversely affected egg production and liver fat ratio, but the addition of 100 or 200 mg kg-1 of propolis improved egg production and decreased liver fat ratio.
Şaziye Canan Bölükbaşı, Büşra Dumlu, and Aycan Mutlu Yağanoğlu
Arch. Anim. Breed., 66, 121–129, https://doi.org/10.5194/aab-66-121-2023, https://doi.org/10.5194/aab-66-121-2023, 2023
Short summary
Short summary
The addition of 1 mL kg−1 pomegranate seed oil (PSO) to feeds improved performance. The addition of PSO had a positive effect on shelf life, and it increased punicic acid and conjugated linoleic acid (CLA) levels without reducing egg quality.
Şaziye Canan Bölükbaşı, Hilal Ürüşan, and Betül Apaydın Yıldırım
Arch. Anim. Breed., 66, 225–232, https://doi.org/10.5194/aab-66-225-2023, https://doi.org/10.5194/aab-66-225-2023, 2023
Short summary
Short summary
The effect of adding propolis to high-energy feed for laying hens on performance values and ratio of liver fat was investigated. High-energy feed adversely affected egg production and liver fat ratio, but the addition of 100 or 200 mg kg-1 of propolis improved egg production and decreased liver fat ratio.
Şaziye Canan Bölükbaşı, Büşra Dumlu, and Aycan Mutlu Yağanoğlu
Arch. Anim. Breed., 66, 121–129, https://doi.org/10.5194/aab-66-121-2023, https://doi.org/10.5194/aab-66-121-2023, 2023
Short summary
Short summary
The addition of 1 mL kg−1 pomegranate seed oil (PSO) to feeds improved performance. The addition of PSO had a positive effect on shelf life, and it increased punicic acid and conjugated linoleic acid (CLA) levels without reducing egg quality.
Cited articles
Abbas, R. J., Al-Salhie, K. C. K., and Al-Hummod, S. K. M.: The effect of using different levels of pomegranate (Punica granatum) peel powder on productive and physiological performance of Japanese quail (Coturnix coturnix japonica), Livest. Res. Rural Dev., 29, 1–7, 2017.
Ahmadi, F. and Rahimi, F.: Factors affecting quality and quantity of egg production in laying hens: A review, World Appl. Sci. J., 12, 372–384, 2011.
Akhtar, S., Ismail, T., Fraternale, D., and Sestili, P.: Pomegranate peel and peel extracts: Chemistry and food features. Food Chemistry, 174, 417–425, https://doi.org/10.1016/j.foodchem.2014.11.035, 2015.
Akkılıç, M. and Tanyolaç, A.: Kafeste beslenen tavuk rasyonlarındaki enerji düzeyinin karaciğer yağlanmasıüzerine etkisi, AÜ Vet. Fak. Derg., 21, 370–389, 1975.
Al-Salhie, K. C. K., Al-Hummod, S. K. M., and Abbas, R. J.: The effect of using different levels of pomegranate (Punica granatum) peel powder on productive and physiological performance of Japanese quail (Coturnix coturnix japonica), Livest. Res. Rural Dev., 29, 1–7, 2017.
Ávila-Reyes, J. A., Almaraz-Abarca, N., Chaidez Ayala, A. I., Ramírez-Noya, D., Delgado Alvarado, E. A., Torres-Ricario, R., and Alanís Bañuelos, R. E.: Foliar phenolic compounds of ten wild species of Verbenacea as antioxidants and specific chemomarkers, Brazilian Journal of Biology, 78, 98–107, 2018.
Aviram, M., Dornfeld, L., Rosenblat, M., Volkova, N., Kaplan, M., Coleman, R., Hayek, T., Presser, D., and Fuhrman, B.: Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E–deficient mice, Am. J. Clin. Nutr., 71, 1062–1076, 2000.
Bagri, P., Ali, M., Aeri, V., Bhowmik, M., and Sultana, S.: Antidiabetic effect of Punica granatum flowers: Effect on hyperlipidemia, pancreatic cells lipid peroxidation, and antioxidant enzymes in experimental diabetes, Food Chem. Toxicol., 47, 504, https://doi.org/10.1016/j.fct.2008.09.058, 2009.
Ben-Simhon, Z., Judeinstein, S., Trainin, T., Harel-Beja, R., Bar-Ya'akov, I., Borochov-Neori, H., and Holland, D.: A “White” anthocyanin-less pomegranate (Punica granatum) caused by an insertion in the coding region of the leucoanthocyanidin dioxygenase (LDOX; ANS) gene, PloS One, 10, e0142777, https://doi.org/10.1371/journal.pone.0142777, 2015.
Bligh, E. G. and Dyer, W. J.: A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911–917, 1959.
Bölükbaşı, Ş. C., Dumlu, B., and Yağanoğlu, A. M.: Improved biological value of eggs due to the addition of pomegranate seed oil to laying-hen diets, Arch. Anim. Breed., 66, 121–129, 2023.
Boussaa, F., Zaouay, F., Burlo-Carbonell, F., Noguera-Artiaga, L., Carbonell-Barrachina, A., Melgarejo, P., Hernandez, F., and Mars, M.: Growing location affects physical properties, bioactive compounds, and antioxidant activity of pomegranate fruit (Punica granatum L. var. Gabsi), Int. J. Fruit Sci., 20, 508–523, https://doi.org/10.1080/15538362.2020.1741058, 2020.
Brand-Williams, W., Cuvelier, M., and Berset, C.: Use of free radical method to evaluate antioxidant activity, Food Science and Technology, 28, 25–30, 1995.
Brenes, A., Viveros, A., Goñi, I., Centeno, C., Sayago-Ayerdi, S. G., Arija, I., and Saura-Calixto, F.: Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens, Poult. Sci., 87, 307–316, 2008.
Caner, C. and Yüceer, M.: Maintaining functional properties of shell eggs by ultrasound treatment, J. Sci. Food Agric., 95, 2880–2891, 2015.
Çetingül, S., Iqbal, A., Bayram, I., Gültepe, E. E., Uyarlar, C., and Özçınar, Ü.: Effect of pomegranate molasses on egg quality traits during different storage times in laying hens, Kocatepe Vet. J., 12, 193–199, 2019.
Eid, Y., Kirrella, A. A., Tolba, A., El-Deeb, M., Sayed, S., El-Sawy, H. B., Shukry, M., and Dawood, M. A. O.: Dietary pomegranate by-product alleviated the oxidative stress induced by dexamethasone in laying hens in the pre-peak period, Animals, 11, 1022, https://doi.org/10.3390/ani11041022, 2021.
El-Hadary, A. E. and Ramadan, M. F.: Phenolic profiles, antihyperglycemic, antihyperlipidemic, and antioxidant properties of pomegranate (Punica granatum) peel extract, J. Food Biochem., 43, e12803, https://doi.org/10.1111/jfbc.12803, 2019.
El-Rashedy, A. H., Belal, S. K., Osman, H. E.-D., and Shehab, G. M.: Protective role of pomegranate on fatty liver in obesity: An experimental chemical and histopathological study, Taif Univ., 2011.
Emami, A., Nasri, M. F., Ganjkhanlou, M., Rashidi, L., and Zali, A.: Dietary pomegranate seed pulp increases conjugated linoleic and linolenic acids in muscle and adipose tissues of kid, Anim. Feed Sci. Technol., 209, 79–89, 2015.
Fiesel, A., Gessner, D. K., Most, E., and Eder, K.: Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs, BMC Vet. Res., 10, 1–11, 2014.
Ghahtan, N., Kohanmoo, M. A., and Habibi, H.: Evaluation of dietary medicinal plants and algae in laying Japanese quails, J. World's Poult. Res., 9, 82–88, 2019.
Gil, M. I., Tomas-Barberan, F. A., Hess-Pierce, B., Holcroft, D. M., and Kader, A. A.: Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing, J. Agric. Food Chem., 48, 4581–4589, 2000.
Goñi, I., Brenes, A., Centeno, C., Viveros, A., Saura-Calixto, F., Rebolé, A., Arija, I., and Estévez, R.: Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens, Poult. Sci., 86, 508–516, 2007.
Goth, L.: A simple method for determi-nation of serumcatalase ac tivity and revision of reference range, Clin. Chim. Ac., 196, 143–152, 1991.
Hernandez, J. M., Beardsworth, P., and Weber, G.: Egg quality – meeting consumer expectations, Int. Poult. Prod., 13, 3, 2005.
Hosseini-Vashan, S. J. and Ghaznavi, T.: The performance and egg quality parameters effect of pomegranate pulp on laying hens in peak production, Iran. J. Anim. Sci. Res., 10, 225–236, 2018.
Howell, A. B. and D'Souza, D. H.: The pomegranate: Effects on bacteria and viruses that influence human health, Evid.-Based Complement. Altern. Med., 606212, https://doi.org/10.1155/2013/606212, 2013.
Huang, T. H., Peng, G., Kota, B. P., Li, G. Q., Yamahara, J., Roufogalis, B. D., and Li, Y.: Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: Role of lowering circulating lipids, Br. J. Pharmacol., 145, 767–774, 2005a.
Huang, T. H., Yang, Q., Harada, M., Li, G. Q., Yamahara, J., Roufogalis, B. D., and Li, Y. : Pomegranate flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats: Modulation of cardiac endothelin 1 and nuclear factor kappaB pathways, J. Cardiovasc. Pharmacol., 46, 856–862, 2005b.
Ishikawa, S., Murakami, H., Yamazaki, M., and Takemasa, M.: Effect of carrot leaf Fsupplementation on egg yolk β-carotene content and egg quality, Jpn. Poult. Sci., 36, 275–283, 1999.
Ivy, C. A. and Nesheim, M. C.: Factors influencing the liver fat content of laying hens, Poult. Sci., 52, 281–291, 1973.
Jacob, J. P., Milles, R. D., and Mather, F. B.: Egg quality, Univ. Fla. Ext., Inst. Food Agric. Sci., 11, 2000.
Jiménez-Moreno, E., González-Alvarado, J. M., González-Serrano, A., Lázaro, R., and Mateos, G. G.: Effect of dietary fiber and fat on performance and digestive traits of broilers from one to twenty-one days of age, Poult. Sci., 88, 2562–2574, 2009.
Jensen, L. S., Schumaier, G. W., and Latshaw, J. D.: “Extra caloric” effect of dietary fat for developing turkeys as influenced by calorie-protein ratio, Poult. Sci., 49, 1697–1704, 1970.
Jurenka, J. S.: Therapeutic applications of pomegranate (Punica granatum L.): A review, Altern. Med. Rev., 13, 128–144, https://pubmed.ncbi.nlm.nih.gov/18590349/ (last access: 25 October 2025), 2008.
Karpe, F., Dickmann, J. R., and Frayn, K. N.: Fatty acids, obesity, and insulin resistance: Time for a reevaluation, Diabetes, 60, 2441–2449, https://doi.org/10.2337/db11-0425, 2011.
Kostogrys, R. B., Filipiak-Florkiewicz, A., Dereń, K., Drahun, A., Czyżyńska-Cichoń, I., Cieślik, E., Szymczyk, B., and Franczyk-Żarów, M. : Effect of dietary pomegranate seed oil on laying hen performance and physicochemical properties of eggs, Food Chem., 221, 1096–1103, 2017.
Lauridsen, C.: From oxidative stress to inflammation: redox balance and immune system, Poult. Sci., 98, 4240–4246, 2019.
Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., and Cheng, S.: Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract, Food Chem., 96, 254–260, 2006.
Liu, J., Han, L., Zhu, L., and Yu, Y.: Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high-fat diet-induced obese rats, Lipids Health Dis., 15, 1–9, 2016.
Long, J., Guo, Y., Yang, J., Henning, S. M., Lee, R. P., Rasmussen, A., and Li, Z.: Bioavailability and bioactivity of free ellagic acid compared to pomegranate juice, Food Funct., 10, 6582–6588, 2019.
Lorzadeh, E., Heidary, Z., Mohammadi, M., Nadjarzadeh, A., Ramezani-Jolfaie, N., and Salehi-Abargouei, A.: Does pomegranate consumption improve oxidative stress? A Systematic review and meta-analysis of randomized controlled clinical trials, Clinical Nutrition ESPEN, 47, 117–127, 2022. https://doi.org/10.1016/j.clnesp.2021.11.017.
Lowry, O. H., Rose Brough, N. J., Farr, A. L., and Randall, V. J.: Protein Measurement with the Folin Phenol, J. Biol. Chem., 193, 265–275, https://doi.org/10.1016/S0021-9258(19)52451-6, 1951.
Manach, C., Scalbert, A., Morand, C., Remesy, C., and Jimenez, L.: Polyphenols: Food sources and bioavailability, Am. J. Clin. Nutr., 79, 727–747, 2004.
Mateos, G., Jiménez-Moreno, E., Serrano, M., and Lázaro, R.: Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics, J. Appl. Poult. Res., 21, 156–174, 2012.
Matkovics, B., Szabo, L., and Varga, I. S.: Determination of enzyme activities in lipid peroxidation and glutathione pathways, Lab. Diagnoszt., 15, 248–249, 1988.
Melgarejo-Sánchez, P., Núñez-Gómez, D., Martínez-Nicolas, J. J., Hernandez, F., Legua, P., and Melgarejo, P.: Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: A review, Bioresour. Bioprocess., 8, https://doi.org/10.1186/s40643-020-00351-5, 2021.
Moga, O. G., Dimienescu, A. B., Balan, L., Dima, S. I., Toma, N. F., Bîgiu, A., and Blidaru, A.: Pharmacological and therapeutic properties of Punica granatum phytochemicals: Possible roles in breast cancer, Molecules, 26, 1054, https://doi.org/10.3390/molecules26041054, 2021.
Naz, S., Siddiqi, R., Ahmad, S., Rasool, S. A., and Sayeed, S. A.: Antibacterial activity directed isolation of compounds from Punica granatum, J. Food Sci., 72, 341–345, 2007.
Noda, Y., Kaneyuka, T., Mori, A., and Packer, L.: Antioxidant activities of pomegranate fruit extract and its anthocyanidins: Delphinidin, cyanidin, and pelargonidin, J. Agric. Food Chem., 50, 166–171, 2002.
Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., and Bansal, Y.: Secondary metabolites of plants and their role: Overview, Curr. Trends Biotechnol. Pharm., 9, 293–304, 2015.
Rajani, J., Torshizi, M. K., and Rahimi, S.: Control of ascites mortality and improved performance and meat shelf-life in broilers using feed adjuncts with presumed antioxidant activity, Anim. Feed Sci. Technol., 170, 239–245, 2011.
Rana, T. S., Narzary, D., and Ranade, S. A.: Systematics and taxonomic disposition of the genus Punica L., in: Pomegranate, edited by: Chandra, R., Fruit Veg. Cereal Sci. Biotechnol., 4, 19–25, 2010.
Saha, S. S. and Ghosh, M.: Comparative study of antioxidant activity of α-eleostearic acid and punicic acid against oxidative stress generated by sodium arsenite, Food Chem. Toxicol., 47, 2551–2556, https://doi.org/10.1016/j.fct.2009.07.012, 2009.
Saki, A. A., Rabet, M., Zamani, P., and Yousefi, A.: The effects of different levels of pomegranate seed pulp with multi-enzyme on performance, egg quality, and serum antioxidant in laying hens, Iran. J. Appl. Anim. Sci., 4, 803–808, 2014.
Saki, A. A., Shamsollah, T., and Ashoori, A.: Egg iron enrichment in response to various levels of pomegranate by-product in laying hen diet, Iran. J. Appl. Anim. Sci., 9, 747–754, 2019.
Salim, A., Deiana, P., Fancello, F., Molinu, M. G., Santona, M., and Zara, S.: Antimicrobial and antibiofilm activities of pomegranate peel phenolic compounds: Varietal screening through a multivariate approach, J. Bioresour. Bioprod., 8, 146–161, 2023.
Sarica, M. and Erensayin, C.: Poultry products, Bey-Ofset, Ankara-Turkey, 100–160, https://pmc.ncbi.nlm.nih.gov/articles/PMC7936192/pdf/main.pdf#page=9.44 (last access: 25 October 2025), 2004 (in Turkish).
Sharma, M. K., Dinh, T., and Adhikari, P. A.: Production performance, egg quality, and small intestine histomorphology of the laying hens supplemented with phytogenic feed additive. Journal of Applied Poultry Research, 29, 362–371, https://doi.org/10.1016/j.japr.2019.12.001, 2020.
Sun, Y., Oberley, L. W., and Li, Y. A.: Simple method for clinical assay of superoxide dismutase, Clin. Chem., 34, 497–500, 1988.
Surai, P. F.: Polyphenol compounds in the chicken/animal diet: from the past to the future, J. Anim. Physiol. Anim. Nutr., 98, 19–31, 2014.
Surai, P. F., Kochish, I. I., Fisinin, V. I., and Kidd, M. T.: Antioxidant defence systems and oxidative stress in poultry biology: An update, Antioxidants, 8, 235, https://doi.org/10.3390/antiox8070235, 2019.
Tietze, F.: Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione, applica tions to mammalian blood and other tissues, Anal. Biochem., 27, 502–522, 1969
USDA: Egg grading manual USDA AA grade, The US Department of Agriculture (USDA), Agricultural Marketing Service (AMS), Washington, D.C., https://www.ams.usda.gov/sites/default/files/EggGradingManual.pdf (last access: 25 October 2025), 2000.
Wells, R. G.: Egg shell strength, Br. Poult. Sci., 8, 193–199, 1967.
Xu, K. Z., Zhu, C., Kim, M. S., Yamahara, J., and Li, Y.: Pomegranate flower ameliorates fatty liver in an animal model of type 2 diabetes and obesity, J. Ethnopharmacol., 123, 280–287, https://doi.org/10.1016/j.jep.2009.03.035, 2009.
Yılmaz, B. and Usta, C.: Nar'ın (Punica granatum) terapötik etkileri, Turk. Aile Hekim. Derg., 14, 146–153, https://doi.org/10.2399/tahd.10.146, 2010.
Yoshioka, T., Kawada, K., Shimada, T., and Mori, M.: Lipid per oxidation in maternal and cord blood and protective mechanism against activatedoxygen toxicity in the blood, Am. J. Obstet. Gy necol., 135, 372–376, 1979.
Short summary
This study evaluated the effects of pomegranate peel supplementation (0, 50, 100, and 150 mg kg-1) in high-energy diets for laying hens. The results indicated that 150 mg kg-1 supplementation improved egg production, feed conversion ratio, shell strength, and yolk color while reducing triglyceride and very-low-density lipoprotein (VLDL) cholesterol levels. Additionally, the liver fat ratio was decreased with 100 and 150 mg kg-1 supplementation. Further research is needed for more detailed findings.
This study evaluated the effects of pomegranate peel supplementation (0, 50, 100, and...