Articles | Volume 68, issue 4
https://doi.org/10.5194/aab-68-619-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-68-619-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wood vinegar for sheep receiving high-concentrate diets
Vitor L. de L. Melo
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
Thiago L. A. C. de Araújo
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
Patrícia de O. Lima
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
Salenilda S. Firmino
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
Pedro P. N. de Oliveira
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
Alexandre S. Pimenta
Specialized Academic Unit in Agricultural Sciences, Universidade Federal do Rio Grande do Norte, Highway 160-Km 03, Jundiaí, 59280-000, Macaíba-RN, Brazil
Michelly F. Macedo
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
José G. L. de Almeida
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
Antônia V. de A. F. Amâncio
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
Maiko R. T. Dantas
Department of Animal Sciences, Universidade Federal Rural do Semi-Árido, Francisco Mota Street, 572, Costa e Silva, 59.625-900, Mossoró-RN, Brazil
Dorgival M. de Lima Júnior
CORRESPONDING AUTHOR
Specialized Academic Unit in Agricultural Sciences, Universidade Federal do Rio Grande do Norte, Highway 160-Km 03, Jundiaí, 59280-000, Macaíba-RN, Brazil
Cited articles
Abdoun, K., Stumpff, F., and Martens, H.: Ammonia and urea transport across the rumen epithelium: a review, Anim. Health Res. Rev., 7, 43–59, https://doi.org/10.1017/S1466252307001156, 2006.
Ahmed, E., Batbekh, B., Fukuma, N., Kand, D., Hanada, M., and Nishida, T.: A garlic and citrus extract: Impacts on behavior, feed intake, rumen fermentation, and digestibility in sheep, Anim. Feed Sci. Technol., 278, 115007, https://doi.org/10.1016/j.anifeedsci.2021.115007, 2021.
Ahmed, M. G., Elwakeel, E. A., El-Zarkouny, S. Z., and Al-Sagheer, A. A.: Environmental impact of phytobiotic additives on greenhouse gas emission reduction, rumen fermentation manipulation, and performance in ruminants: an updated review, Environment. Sci. Pollut. Res., 31, 37943–37962, https://doi.org/10.1007/S11356-024-33664-5, 2024.
Al Rharad, A., El Aayadi, S., Avril, C., Souradjou, A., Sow, F., Camara, Y., Hornick, J.-L., and Boukrouh, S. Meta-Analysis of Dietary Tannins in Small Ruminant Diets: Effects on Growth Performance, Serum Metabolites, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Fatty Acid Profile, Animals, 15, 596, https://doi.org/10.3390/ani15040596, 2025.
AOAC: Official Methods of Analysis, 21st edn., edited by: Latimer Jr., G., Association of Official Agricultural Chemists, Gaithersburg, ISBN 978-0935584899, 2019.
Araújo, E. de S., Pimenta, A. S., Feijó, F. M. C., Castro, R. V. O., Fasciotti, M., Monteiro, T. V. C., and de Lima, K. M. G.: Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora, J. Appl. Microbiol., 124, 85–96, https://doi.org/10.1111/jam.13626, 2018.
Bach, A., Calsamiglia, S., and Stern, M. D.: Nitrogen Metabolism in the Rumen, J. Dairy Sci., 88, E9–E21, https://doi.org/10.3168/jds.S0022-0302(05)73133-7, 2005.
Bürger, P. J., Pereira, J. C., Queiroz, A. C. de, Coelho da Silva, J. F., Valadares Filho, S. de C., Cecon, P. R., and Casali, A. D. P.: Comportamento ingestivo em bezerros holandeses alimentados com dietas contendo diferentes níveis de concentrado, R. Bras. Zootec., 29, 236–242, https://doi.org/10.1590/S1516-35982000000100031, 2000.
Buryakov, N., Aleshin, D., Buryakova, M., Zaikina, A., Nasr, M., Nassan, M., and Fathala, M.: Productive Performance and Blood Biochemical Parameters of Dairy Cows Fed Different Levels of High-Protein Concentrate, Front. Vet. Sci., 9, 852240, https://doi.org/10.3389/fvets.2022.852240, 2022.
Carlis, M. S. de P., Sturion, T. U., Silva, A. L. A. da, Eckermann, N. R., Polizel, D. M., Assis, R. G., Souza, T. T., Dias Junior, P. C. G., Vicente, A. C. S., Santos, I. J., Comelli, J. H., Baiva, J. S., Pires, A. V., and Ferreira, E. M.: Whole corn grain-based diet and levels of physically effective neutral detergent fiber from forage (pefNDF) for feedlot lambs: Digestibility, ruminal fermentation, nitrogen balance and ruminal pH, Small Rum. Res., 205, 106567, https://doi.org/10.1016/j.smallrumres.2021.106567, 2021.
Clauss, M. and Hummel, J.: Physiological adaptations of ruminants and their potential relevance for production systems, R. Bras. Zootec., 46, 606–613, https://doi.org/10.1590/s1806-92902017000700008, 2017.
Cui, K., Qi, M., Wang, S., Diao, Q., and Zhang, N.: Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs, Sci. Rep., 9, 1–10, https://doi.org/10.1038/s41598-019-53279-y, 2019.
Detmann, E. and Valadares Filho, S. C.: On the estimation of non-fibrous carbohydrates in feeds and diets, Arq. Bras. Med. Vet. Zootec., 62, 980–984, https://doi.org/10.1590/S0102-09352010000400030, 2010.
Detmann, E., Souza, M. A. de, Valadares Filho, S. de C., Queiroz, A. C. de, Berchielli, T. T., Saliba, E. de O. S., Cabral, L. da S., Pina, D. dos S., Ladeira, M. M., and Azevedo, J. A. G.: Métodos para análise de alimentos, Visconde do Rio Branco, Suprema, 214, ISBN 9788581790206, 2012.
Eustáquio Filho, A., Carvalho, G. G. P., Pires, A. J. V., Silva, R. R., Santos, P. E. F., Murta, R. M., Pereira, F. M., Carvalho, B. M. A., Maranhão, C. M. A., Rufino, L. M. A., Santos, S. A., and Pina, D. S.: Intake and ingestive behavior in lambs fed low-digestibility forages, Trop. Anim. Health Prod., 48, 1315–1321, https://doi.org/10.1007/s11250-016-1090-x, 2016.
Fimbres, H., Kawas, J. R., Hernández-Vidal, G., Picón-Rubio, J. F., and Lu, C. D.: Nutrient intake, digestibility, mastication and ruminal fermentation of lambs fed finishing ration with various forage levels, Small Rum. Res., 43, 275–281, https://doi.org/10.1016/S0921-4488(02)00013-5, 2002.
Gama, G. S. P., Pimenta, A. S., Feijó, F. M. C., de Azevedo, T. K. B., de Melo, R. R., and de Andrade, G. S.: The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry – A Review, Animals, 14, 381, https://doi.org/10.3390/ANI14030381, 2024.
González, L. A., Manteca, X., Calsamiglia, S., Schwartzkopf-Genswein, K. S., and Ferret, A.: Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function and feeding behavior (a review), Anim. Feed Sci. Technol., 172, 66–79, https://doi.org/10.1016/j.anifeedsci.2011.12.009, 2012.
Goulart, R. S., Vieira, R. A. M., Daniel, J. L. P., Amaral, R. C., Santos, V. P., Toledo Filho, S. G., Cabezas-Garcia, E. H., Tedeschi, L. O., and Nussio, L. G.: Effects of source and concentration of neutral detergent fiber from roughage in beef cattle diets on feed intake, ingestive behavior, and ruminal kinetics, J. Anim. Sci., 98, 1–15, https://doi.org/10.1093/JAS/SKAA107, 2020.
Guo, T., Wang, Z. L., Guo, L., Li, F., and Li, F.: Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs, Transl. Anim. Sci., 5, txab065, https://doi.org/10.1093/tas/txab065, 2021.
Hanigan, M. D., White, R. R., Apelo, S. I. A., Aguilar, M., Estes, K. A., and Myers, A.: Predicting post-absorptive protein and amino acid metabolism, R. Bras. Zootec., 47, e20160417, https://doi.org/10.1590/RBZ4720160417, 2018.
Hristov, A. N., Bannink, A., Crompton, L. A., Huhtanen, P., Kreuzer, M., McGee, M., Nozière, P., Reynolds, C. K., Bayat, A. R., Yáñez-Ruiz, D. R., Dijkstra, J., Kebreab, E., Schwarm, A., Shingfield, K. J., and Yu, Z.: Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques, J. Dairy Sci., 102, 5811–5852, https://doi.org/10.3168/jds.2018-15829, 2019.
Jain, N. C.: Essentials of veterinary hematology, Lea & Febiger, Philadelphia, 417 pp., ISBN 9780812114379, 1993.
Jankowsky, L., Lira, S. P. de, Tanaka, F. A. O., Jankowsky, I. P., and Brito, J. O.: Antimicrobial Activity of the Methanolic Fraction of Bamboo Pyroligneous Liquor, J. Pharm. Pharmacol., 6, https://doi.org/10.17265/2328-2150/2018.10.005, 2018.
Jiménez, L. E. R., Naranjo, A., Hernandez, J. C. A., Ovalos, J. O., Ortega, O. C., and Ronquillo, M. G.: A meta-analysis on the effect of the feeding type and production system on the carcase quality of lambs, Ital. J. Anim. Sci., 18, 423–434, https://doi.org/10.1080/1828051X.2018.1532327, 2019.
Kook, K. and Kim, K. H.: The Effects of Supplemental Levels of Bamboo Vinegar on Growth Performance, Serum Profile and Meat Quality in Fattening Hanwoo Cow, J. Anim. Sci. Technol., 45, 57–68, https://doi.org/10.5187/JAST.2003.45.1.057, 2003.
Licitra, G., Hernandez, T. M., and Van Soest, P. J.: Standardization of procedures for nitrogen fractionation of ruminant feeds, Anim. Feed Sci. Technol., 57, 347–358, https://doi.org/10.1016/0377-8401(95)00837-3, 1996.
Meda, A., Lamien, C. E., Romito, M., Millogo, J., and Nacoulma, O. G.: Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity, Food Chem., 91, 571–577, https://doi.org/10.1016/j.foodchem.2004.10.006, 2005.
Mendes, J. A. C., Maia Parente, M. O., Nunes Parente, H., Zanine, A. M., Ferreira, D. J., Moreira Filho, M. A., Leme Da Cunha, I. A., Ladim, A. V., and Sousa Da Rocha, K.: Performance, ingestive behavior and cost of production of finishing lambs fed non-forage diets, Biol. Rhythm Res., 51, 460–470, https://doi.org/10.1080/09291016.2018.1535540, 2020.
Mertens, D. R.: Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study., J AOAC Int., 85, 1217–40, 2002.
Mhamdi, R.: Evaluating the evolution and impact of wood vinegar research: A bibliometric study, J. Anal. Appl. Pyrolysis, 175, 106190, https://doi.org/10.1016/J.JAAP.2023.106190, 2023.
Montano, M. F., Manriquez, O. M., Salinas-Chavira, J., Torrentera, N., and Zinn, R. A.: Effects of monensin and virginiamycin supplementation in finishing diets with distiller dried grains plus solubles on growth performance and digestive function of steers, J. Appl. Anim. Res., 43, 417–425, https://doi.org/10.1080/09712119.2014.978785, 2015.
Moya, D., Mazzenga, A., Holtshausen, L., Cozzi, G., González, L. A., Calsamiglia, S., Gibb, D. G., McAllister, T. A., Beauchemin, K. A., and Schwartzkopf-Genswein, K.: Feeding behavior and ruminal acidosis in beef cattle offered a total mixed ration or dietary components separately, J. Anim. Sci., 89, 520–530, https://doi.org/10.2527/JAS.2010-3045, 2011.
NRC: Nutrient Requirement of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids, The National Academies Press, Washington, DC, 362 pp., ISBN 978-0309102131, 2007.
O'Reilly, G. C., Huo, Y., Meale, S. J., and Chaves, A. V.: Dose response of biochar and wood vinegar on in vitro batch culture ruminal fermentation using contrasting feed substrates, Transl. Anim. Sci., 5, txab107, https://doi.org/10.1093/TAS/TXAB107, 2021.
Orzuna-Orzuna, J., Dorantes-Iturbide, G., Lara-Bueno, A., Mendoza-Martínez, G., Miranda-Romero, L., and Hernández-García, P.: Effects of Dietary Tannins' Supplementation on Growth Performance, Rumen Fermentation, and Enteric Methane Emissions in Beef Cattle: A Meta-Analysis, Sustainability, 13, 7410, https://doi.org/10.3390/su13137410, 2021.
Pimenta, A., Fasciotti, M., Monteiro, T., and Lima, K.: Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone, Molecules, 23, 426, https://doi.org/10.3390/molecules23020426, 2018.
Pimenta, A. S., Gama, G. S. P., Feijó, F. M. C., Braga, R. M., de Azevedo, T. K. B., de Melo, R. R., de Oliveira Miranda, N., and de Andrade, G. S.: Wood Vinegar from Slow Pyrolysis of Eucalyptus Wood: Assessment of Removing Contaminants by Sequential Vacuum Distillation, Forests, 14, 2414, https://doi.org/10.3390/f14122414, 2023.
Putri, E. M., Zain, M., Warly, L., and Hermon, H.: Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis, Vet. World, 14, 640–648, https://doi.org/10.14202/vetworld.2021.640-648, 2021.
Qomariyah, N., Retnani, Y., Jayanegara, A., Wina, E., and Permana, I. G.: Gas production kinetic and organic matter digestibility in vitro of diet supplemented by biochar and liquid smoke, IOP Conf. Ser. Mater Sci. Eng., 1098, 062031, https://doi.org/10.1088/1757-899X/1098/6/062031, 2021.
Santos, J. D. C. dos, Saraiva, E. P., Gonzaga Neto, S., Saraiva, C. A. S., Pinheiro, A. da C., Fonsêca, V. de F. C., Santos, S. G. C. G. dos, Souza, C. G. de, Almeida, M. E. V., Veríssimo, T. N. S., and Morais, L. K. da C.: Feeding Behavior of Lactating Dairy Cattle Fed Sorghum-Based Diets and Increasing Levels of Tannic Acid, Agriculture, 11, 172, https://doi.org/10.3390/agriculture11020172, 2021.
Shen, J., Zheng, W., Xu, Y., and Yu, Z.: The inhibition of high ammonia to in vitro rumen fermentation is pH dependent, Front. Vet. Sci., 10, 1163021, https://doi.org/10.3389/fvets.2023.1163021, 2023.
Torres, R. N. S., Paschoaloto, J. R., Ezequiel, J. M. B., da Silva, D. A. V., and Almeida, M. T. C.: Meta-analysis of the effects of essential oil as an alternative to monensin in diets for beef cattle, The Veterinary J., 272, 105659, https://doi.org/10.1016/j.tvjl.2021.105659, 2021.
Van Soest, P. J., Robertson, J. B., and Lewis, B. A.: Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition, J. Dairy Sci., 74, 3583–3597, https://doi.org/10.3168/jds.S0022-0302(91)78551-2, 1991.
Wang, Y., Li, X., Yang, J., Tian, Z., Sun, Q., Xue, W., and Dong, H.: Mitigating Greenhouse Gas and Ammonia Emissions from Beef Cattle Feedlot Production: A System Meta-Analysis, Environ. Sci. Technol., 52, 11232–11242, https://doi.org/10.1021/acs.est.8b02475, 2018.
Weiss, W. P., Conrad, H. R., and St. Pierre, N. R.: A theoretically-based model for predicting total digestible nutrient values of forages and concentrates, Anim. Feed Sci. Technol., 39, 95–110, https://doi.org/10.1016/0377-8401(92)90034-4, 1992.
Yanza, Y. R., Fitri, A., Suwignyo, B., Elfahmi, Hidayatik, N., Kumalasari, N. R., Irawan, A., and Jayanegara, A.: The Utilisation of Tannin Extract as a Dietary Additive in Ruminant Nutrition: A Meta-Analysis, Animals, 11, 3317, https://doi.org/10.3390/ani11113317, 2021.
Yıldızlı, G., Coral, G., and Ayaz, F.: Anti-bacterial, anti-fungal, and anti-inflammatory activities of wood vinegar: a potential remedy for major plant diseases and inflammatory reactions, Biomass Convers. Biorefin., 14, 3633–3642, https://doi.org/10.1007/s13399-022-02482-5, 2024.
Zhang, Z., Wang, L., Li, Q., Li, F., Ma, Z., Li, F., Wang, Z., Chen, L., Yang, X., Wang, X., and Yang, G.: Effects of dietary forage neutral detergent fiber and rumen degradable starch ratios on chewing activity, ruminal fermentation, ruminal microbes and nutrient digestibility of Hu sheep fed a pelleted total mixed ration, J. Anim. Sci., 102, skae100, https://doi.org/10.1093/jas/skae100, 2024.
Short summary
Our study sought to investigate the impact of increasing doses of wood vinegar (WV) supplementation on nutrient utilization, metabolism, and nitrogen balance in sheep. These sheep were fed increasing doses of WV (0, 10, 20, 30, and 40 mL d-1) while receiving high-concentrate diets. Our findings suggest that WV interferes with rumen function and improves protein metabolism in sheep.
Our study sought to investigate the impact of increasing doses of wood vinegar (WV)...