Articles | Volume 67, issue 4
https://doi.org/10.5194/aab-67-455-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-67-455-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comprehensive analysis of the effects of DGAT1 K232A polymorphism on milk production and fertility traits in Holstein Friesian and Jersey cows reared in Türkiye
Sena Ardicli
Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
Ertugrul Kul
Department of Animal Science, Faculty of Agriculture, University of Kirsehir Ahi Evran, 40200 Kırşehir, Türkiye
Samet Hasan Abaci
Department of Animal Science, Faculty of Agriculture, University of Ondokuz Mayis, 55139 Samsun, Türkiye
Eser Kemal Gurcan
Department of Animal Science, Faculty of Agriculture, University of Namik Kemal, 59030 Tekirdağ, Türkiye
Soner Cankaya
Department of Sport Management, Faculty of Yasar Doğu Sport Sciences, University of Ondokuz Mayis, 55139 Samsun, Türkiye
Related authors
Nursen Senturk, Tugce Necla Selvi, Mustafa Demir, Hakan Ustuner, Hale Samli, and Sena Ardicli
Arch. Anim. Breed., 67, 523–531, https://doi.org/10.5194/aab-67-523-2024, https://doi.org/10.5194/aab-67-523-2024, 2024
Short summary
Short summary
The LEP gene has been extensively studied in cattle, but research on goats is limited, often overlooking vital parameters like reproduction and growth. We investigate the relationship between LEP gene polymorphisms and growth or reproductive traits in Saanen goats. Notably, the LEP-Sau3AI SNP exhibited associations with birth weight and average daily weight gain. This pioneering study is the first to explore these traits alongside selected LEP variants in Saanen goats.
Sena Ardicli, Özgür Aldevir, Emrah Aksu, Kerem Kucuk, and Ahmet Gümen
Arch. Anim. Breed., 67, 61–71, https://doi.org/10.5194/aab-67-61-2024, https://doi.org/10.5194/aab-67-61-2024, 2024
Short summary
Short summary
Genetic selection based on bovine casein variants, especially for A2 milk, is a scorching topic in animal breeding and genetics. Our study assessed the genotypic/allelic frequencies, population genetics, diversity parameters, and relationship between genotypes and breeding values with respect to two casein genes, CSN2 and CSN3 in Holstein Friesian cows. The present results are critical for evaluating the genetic merit of cows in commercial dairy cattle breeding.
Kemal Yazgan, Mehmet İhsan Soysal, Yasemin Öner, Eser Kemal Gürcan, and Emel Özkan Ünal
Arch. Anim. Breed., 69, 69–75, https://doi.org/10.5194/aab-69-69-2026, https://doi.org/10.5194/aab-69-69-2026, 2026
Short summary
Short summary
This study investigated the extent to which genetic factors contribute to variations in body weight among Anatolian buffalo calves from birth to 12 months of age. Utilizing data collected from multiple farms in the Istanbul region, the analysis revealed that genetic influence on growth traits is substantial. The results indicate that selection based on estimated genetic merit could effectively enhance growth performance in Anatolian buffalo populations.
Sinem Akçam and Ertuğrul Kul
Arch. Anim. Breed., 68, 193–199, https://doi.org/10.5194/aab-68-193-2025, https://doi.org/10.5194/aab-68-193-2025, 2025
Short summary
Short summary
This study aimed to reveal the effects of birth weight (BW), 6-month live weight (LW6), and 12-month LW (LW12) on the first lactation milk yield and reproduction characteristics and to determine the non-genetic factors affecting these traits of Anatolian buffaloes in Amasya Province. The effect of growth traits on the first calving age (FCA) of the LW12 group was significant (P = 0.036).
Nursen Senturk, Tugce Necla Selvi, Mustafa Demir, Hakan Ustuner, Hale Samli, and Sena Ardicli
Arch. Anim. Breed., 67, 523–531, https://doi.org/10.5194/aab-67-523-2024, https://doi.org/10.5194/aab-67-523-2024, 2024
Short summary
Short summary
The LEP gene has been extensively studied in cattle, but research on goats is limited, often overlooking vital parameters like reproduction and growth. We investigate the relationship between LEP gene polymorphisms and growth or reproductive traits in Saanen goats. Notably, the LEP-Sau3AI SNP exhibited associations with birth weight and average daily weight gain. This pioneering study is the first to explore these traits alongside selected LEP variants in Saanen goats.
Sena Ardicli, Özgür Aldevir, Emrah Aksu, Kerem Kucuk, and Ahmet Gümen
Arch. Anim. Breed., 67, 61–71, https://doi.org/10.5194/aab-67-61-2024, https://doi.org/10.5194/aab-67-61-2024, 2024
Short summary
Short summary
Genetic selection based on bovine casein variants, especially for A2 milk, is a scorching topic in animal breeding and genetics. Our study assessed the genotypic/allelic frequencies, population genetics, diversity parameters, and relationship between genotypes and breeding values with respect to two casein genes, CSN2 and CSN3 in Holstein Friesian cows. The present results are critical for evaluating the genetic merit of cows in commercial dairy cattle breeding.
Ozden Cobanoglu, Ertugrul Kul, Eser K. Gurcan, Samet H. Abaci, and Soner Cankaya
Arch. Anim. Breed., 64, 417–424, https://doi.org/10.5194/aab-64-417-2021, https://doi.org/10.5194/aab-64-417-2021, 2021
Short summary
Short summary
This study aimed to detect a potential association between GHR/AluI polymorphism and milk yield and milk composition traits in dairy cows raised in commercial herds using the PCR-RFLP assay. In conclusion, the GHR gene should be regarded as potential candidate genes in marker-assisted selection programs to improve the performance of milk and related traits in Turkey dairy cattle populations.
Cited articles
Akyuz, B., Agaoglu, O. K., Akçay, A., and Agaoglu, A. R.: Effects of DGAT1 and GH1 polymorphism on milk yield in Holstein cows reared in Turkey, Slov. Vet. Res., 52, 185–191, 2015.
Anton, I., Kovács, K., Fésüs, L., Várhegyi, J., Lehel, L., Hajda, Z., Polgar, J., Szabó, F., and Zsolnai, A.: Effect of DGAT1 and TG gene polymorphisms on intramuscular fat and on milk production traits in different cattle breeds in Hungary, Acta Vet. Hung., 56, 181–186, https://doi.org/10.1556/avet.56.2008.2.5, 2008.
Anton, I., Kovács, K., Holló, G., Farkas, V., Szabó, F., Egerszegi, I., Rátky, J., Zsolnai, A., and Brüssow, K. P.: Effect of DGAT1, leptin and TG gene polymorphisms on some milk production traits in different dairy cattle breeds in Hungary, Arch. Anim. Breed., 55, 307–314, https://doi.org/10.5194/aab-55-307-2012, 2012.
Ardicli, S., Soyudal, B., Samli, H., Dincel, D., and Balci, F.: Effect of STAT1, OLR1, CSN1S1, CSN1S2, and DGAT1 genes on milk yield and composition traits of Holstein breed, Rev. Bras. Zootec., 47, e20170247, https://doi.org/10.1590/rbz4720170247, 2018.
Ardicli, S., Samli, H., Vatansever, B., Soyudal, B., Dincel, D., and Balci, F.: Comprehensive assessment of candidate genes associated with fattening performance in Holstein–Friesian bulls, Arch. Anim. Breed., 62, 9–32, https://doi.org/10.5194/aab-62-9-2019, 2019a.
Ardicli, S., Samli, H., Soyudal, B., Dincel, D., and Balci, F.: Evaluation of candidate gene effects and environmental factors on reproductive performance of Holstein cows, S. Afr. J. Anim. Sci., 49, 379–374, https://doi.org/10.4314/sajas.v49i2.17, 2019b.
Ardicli, S., Aldevir, Ö., Aksu, E., Kucuk, K., and Gümen, A.: Associations of bovine beta-casein and kappa-casein genotypes with genomic merit in Holstein Friesian cattle, Arch. Anim. Breed., 67, 61–71, https://doi.org/10.5194/aab-67-61-2024, 2024.
Ashwell, M., Heyen, D., Sonstegard, T. S., Van Tassell, C. P., Da, Y., VanRaden, P. M., Ron, M., Weller, J. I., and Lewin, H. A.: Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle, J. Dairy Sci., 87, 468–475, https://doi.org/10.3168/jds.S0022-0302(04)73186-0, 2004.
Atashi, H., Chen, Y., Vanderick, S., Hubin, X., and Gengler, N.: Single-step genome-wide association analyses for milk urea concentration in Walloon Holstein cows, J. Dairy Sci., 107, 3020–3031, https://doi.org/10.3168/jds.2023-23902, 2024.
Berry, D. P., Howard, D., O'Boyle, P., Waters, S., Kearney, J. F., and McCabe, M.: Associations between the K232A polymorphism in the diacylglycerol-O-transferase 1 (DGAT1) gene and performance in Irish Holstein-Friesian dairy cattle, Ir. J. Agric. Food Res., 49, 1–9, 2010.
Bobbo, T., Tiezzi, F., Penasa, M., De Marchi, M., and Cassandro, M.: Association analysis of diacylglycerol acyltransferase (DGAT1) mutation on chromosome 14 for milk yield and composition traits, somatic cell score, and coagulation properties in Holstein bulls, J. Dairy Sci., 101, 8087–8091, https://doi.org/10.3168/jds.2018-14533, 2018.
Botstein, D., White, R. L., Skolnick, M., and Davis, R. W.: Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet., 32, 314–331, 1980.
Bovenhuis, H., Visker, M., Poulsen, N., Sehested, J., van Valenberg, H. J. F., van Arendonk, J. A. M., Larsen, L. B., and Buitenhuis, A. J.: Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk, J. Dairy Sci., 99, 3113–3123, https://doi.org/10.3168/jds.2015-10462, 2016.
Carvajal, A., Huircan, P., Dezamour, J., Subiabre, I., Kerr, B., Morales, R., and Ungerfeld, E. M.: Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation, Genet. Mol. Res., 15, 15027057, https://doi.org/10.4238/gmr.15027057, 2016.
Collis, E., Fortes, M., Zhang, Y., Tier, B., Schutt, K., Barendse, W., and Hawken, R.: Genetic variants affecting meat and milk production traits appear to have effects on reproduction traits in cattle, Anim. Genet., 43, 442–446, https://doi.org/10.1111/j.1365-2052.2011.02272.x, 2012.
Curi, R. A., Palmieri, D. A., Suguisawa, L., Oliveira, H. N., Silveira, A. C., and Lopes, C. R.: Growth and carcass traits associated with GH1/Alu I and POU1F1/Hinf I gene polymorphisms in Zebu and crossbred beef cattle, Genet. Mol. Biol., 29, 56–61, https://doi.org/10.1590/S1415-47572006000100012, 2006.
Demeter, R. M., Schopen, G. C. B., Oude Lansink, A. G. J. M., Meuwissen, M. P. M., and van Arendonk, J. A. M.: Effects of milk fat composition, DGAT1, and SCD1 on fertility traits in Dutch Holstein cattle, J. Dairy Sci., 92, 11, 5720–5729, https://doi.org/10.3168/jds.2009-2069, 2009.
Dokso, A., Ivanković, A., Zečević, E., and Brka, M.: Effect of DGAT1 gene variants on milk quantity and quality in Holstein, Simmental and Brown Swiss cattle breeds in Croatia, Mljekarstvo, 65, 238–242, https://doi.org/10.15567/mljekarstvo.2015.0403, 2015.
Ensembl genome browser: DGAT1, Cattle Gene, https://www.ensembl.org/index.html, last access: 26 May 2024.
Falconer, D. S. and Mackay, T. F. C.: Introduction to Quantitative Genetics, Harlow, Pearson Education Ltd., ISBN-10: 0582243025, 1996.
Fink, T., Lopdell, T. J., Tiplady, K., Handley, R., Johnson, T. J. J., Spelman, R. J., Davis, S. R., Snell, R. G., and Littlejohn, M. D.: A new mechanism for a familiar mutation–bovine DGAT1 K232A modulates gene expression through multi-junction exon splice enhancement, BMC Genomics, 21, 591, https://doi.org/10.1186/s12864-020-07004-z, 2020.
González-Recio, O., De Maturana, E. L., and Gutiérrez, J.: Inbreeding depression on female fertility and calving ease in Spanish dairy cattle, J. Dairy Sci., 90, 5744–5752, https://doi.org/10.3168/jds.2007-0203, 2007.
Gothwal, A., Magotra, A., Bangar, Y. C., Malik, B. S., Yadav, A. S., and Garg, A. R.: Candidate K232A mutation of DGAT1 gene associated with production and reproduction traits in Indian Dairy cattle, Anim. Biotechnol., 34, 2608–2616, https://doi.org/10.1080/10495398.2022.2109041, 2023.
Green, M. J. S.: Isolation of high-molecular-weight DNA from mammalian cells using proteinase K and phenol, in: Molecular Cloning: A Laboratory Manual, 4th Edn., Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 47–48, ISBN-13: 978-1936113422, 2012.
Grisart, B, Coppieters, W, Farnir, F, Karim, L., Ford, C., Berzi, P., Cambisano, N., Mni, M., Reid, S., Simon, P., Spelman, R., Georges, M., and Snell, R.: Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition, Genome Res., 12, 222–231, https://doi.org/10.1101/gr.224202, 2002.
Grisart, B., Farnir, F., Karim, L., Cambisano, N., Kim, J. J., Kvasz, A., Mni, M., Simon, P., Frere, J.-M., Coppieters W., and Georges, M.: Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition, P. Natl. Acad. Sci. USA, 101, 2398–2403, 2004.
Kadlecová, V., Nĕmĕcková, D., Ječmínková, K., and Stádník, L.: Association of bovine DGAT1 and leptin genes polymorphism with milk production traits and energy balance indicators in primiparous Holstein cows, Mljekarstvo/Dairy, 64, 19–26, ISSN 1846-4025, Hrcak ID 117066, 2014.
Kaupe, B., Winter, A., Fries, R., and Erhardt, G.: DGAT1 polymorphism in Bos indicus and Bos taurus cattle breeds, J. Dairy Res., 71, 182–187, 2004.
Khan, M. Z., Wang, D., Liu, L., Usman, T., Wen, H., Zhang, R., Liu, S., Shi, L., Mi, S., Xiao, W., and Yu, Y.: Significant genetic effects of JAK2 and DGAT1 mutations on milk fat content and mastitis resistance in Holsteins, J. Dairy Res., 86, 388–393, https://doi.org/10.1017/S0022029919000682, 2019.
Komisarek, J., Waskowicz, K., Michalak, A., and Dorynek, Z.: Effects of DGAT1 variants on milk production traits in Jersey cattle, Anim. Sci. Pap. Rep., 22, 307–313, 2004.
Kong H, Oh J, Lee J, Yoon, D. H., Choi, Y. H., Cho, B. W., Lee, H. K., and Jeon, G. J.: Association of sequence variations in DGAT 1 gene with economic traits in Hanwoo (Korea cattle), Asian-Australas, J. Anim. Sci., 20, 817–820, https://doi.org/10.5713/ajas.2007.817, 2007.
Koopaei, H. K., Abadi, M. R. M., Mahyari, S. A., Tarang, A. R., Potki, P., and Koshkoiyeh, A. E.: Effect of DGAT1 variants on milk composition traits in Iranian Holstein cattle population, Anim. Sci. Pap. Rep., 30, 231–239, 2012.
Krovvidi, S., Thiruvenkadan, A. K., Murali N., Saravanan, R., Vinoo, R., and Metta, M.: Evaluation of non-synonym mutation in DGAT1 K232A as a marker for milk production traits in Ongole cattle and Murrah buffalo from Southern India, Trop. Anim. Health Prod., 53, 118, https://doi.org/10.1007/s11250-021-02560-2, 2021.
Lehner, R. and Kuksis A.: Biosynthesis of triacylglycerols, Prog. Lipid Res., 35, 169–201, https://doi.org/10.1016/0163-7827(96)00005-7, 1996.
Lešková, L., Bauer, M., Chrenek, P., Lackova, Z., Soročinová, J., Petrovič, V., and Kováč, G.: Detection of DGAT1 gene polymorphism and its effect on selected biochemical indicators in dairy cows after calving, Acta Vet. Brno, 82, 265–269, https://doi.org/10.2754/avb201382030265, 2013.
Li, Y., Zhou, H., Cheng, L., Edwards, G. R., and Hickford, J. G. H.: Effect of DGAT1 variant (K232A) on milk traits and milk fat composition in outdoor pasture-grazed dairy cattle, N. Z. J. Agric. Res., 64, 101–113, https://doi.org/10.1080/00288233.2019.1589537, 2021.
Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M., and Cunningham, P.: Evidence for two independent domestications of cattle, P. Natl. Acad. Sci. USA, 91, 2757–2761, 1994.
Magan, J. B., O'Callaghan, T. F., Kelly, A. L., and McCarthy, N. A.: Compositional and functional properties of milk and dairy products derived from cows fed pasture or concentrate-based diets, Compr. Rev. Food Sci. F., 20, 2769–2800, https://doi.org/10.1111/1541-4337.12751, 2021.
Mahmoudi, P. and Rashidi, A.: Strong evidence for association between K232A polymorphism of the DGAT1 gene and milk fat and protein contents: A meta-analysis, J. Dairy Sci., 106, 2573–2587, https://doi.org/10.3168/jds.2022-22315, 2023.
Manga, I. and Říha, H.: The DGAT1 gene K232A mutation is associated with milk fat content, milk yield and milk somatic cell count in cattle, Arch. Anim. Breed., 54, 257–263, https://doi.org/10.5194/aab-54-257-2011, 2011.
Mansbridge, R. and Blake, J.: Nutritional factors affecting the fatty acid composition of bovine milk, Br. J. Nutr., 78, S37–S47, https://doi.org/10.1079/BJN19970133, 1997.
Mao Y, Chen R, Chang L, Chen, Y., Ji, D. J., Wu, X. X., Shi, X. K., Wu., H. T., Zhang, M. R., Yang, Z. P., König, S., and Yang, L. G.: Effects of SCD1-and DGAT1-genes on production traits of Chinese Holstein cows located in the Delta Region of Yangtze River, Livest. Sci., 145, 280–286, https://doi.org/10.1016/j.livsci.2011.12.019, 2012.
Medjugorac I, Kustermann W, Lazar P, Russ, I., and Pirchner, F.: Marker-derived phylogeny of European cattle supports demic expansion of agriculture, Anim. Genet., 25, 19–27, https://doi.org/10.1111/j.1365-2052.1994.tb00399.x, 1994.
Mohammed, S.A., Rahamtalla, S. A., Ahmed, S. S., Elhafiz, A., Dousa, B. M., Elamin, K. M., and Ahmed, M. K. A.: DGAT1 gene in dairy cattle, Glob. J. Anim., 3, 191–198, 2015.
Molee, A., Poompramun, C., and Mernkrathoke, P.: Effect of casein genes-beta-LGB, DGAT1, GH, and LHR-on milk production and milk composition traits in crossbred Holsteins, Genet. Mol. Res., 14, 2561–2571, https://doi.org/10.4238/2015.March.30.15, 2015.
Nei, M. and Roychoudhury, A: Sampling variances of heterozygosity and genetic distance, Genetics, 76, 379–390, 1974.
Ooi, E., Xiang, R., Chamberlain, A. J., and Goddard, M. E.: Archetypal clustering reveals physiological mechanisms linking milk yield and fertility in dairy cattle, J. Dairy Sci., 107, 4726–4742, https://doi.org/10.3168/jds.2023-23699, 2024.
Pathak, R. K., Lim, B., Park, Y., and Kim, J. M.: Unraveling structural and conformational dynamics of DGAT1 missense nsSNPs in dairy cattle, Sci. Rep., 12, 4873, https://doi.org/10.1038/s41598-022-08833-6, 2022.
Ripoli, M. V., Corva, P., and Giovambattista, G.: Analysis of a polymorphism in the DGAT1 gene in 14 cattle breeds through PCR-SSCP methods, Res. J. Vet. Sci., 80, 287–290, https://doi.org/10.1016/j.rvsc.2005.07.006, 2006.
Rychtarova, J., Sztankoova, Z., Kyselova, J., Zink, V., Stipkova, M., Vacek, M., and Stolc, L.: Effect of DGAT1, BTN1A1, OLR1, and STAT1 genes on milk production and reproduction traits in the Czech Fleckvieh breed, Czech J. Anim. Sci., 59, 45–53, 2014.
Samuel, B., Dadi, H., and Dinka, H.: Effect of the DGAT1 K232A mutation and breed on milk traits in cattle populations of Ethiopia, Front. Anim. Sci., 4, 1096706, https://doi.org/10.3389/fanim.2023.1096706, 2023.
Schennink, A., Stoop, W. M., Visker, M. W., Heck, J. M. L., Bovenhuis, H., Van Der Poel, J. J., Van Valenberg, H. J. F., and Van Arendonk, J. A. M.: DGAT1 underlies large genetic variation in milk-fat composition of dairy cows, Anim. Genet., 38, 467–473, https://doi.org/10.1111/j.1365-2052.2007.01635.x, 2007.
Strzałkowska, N., Siadkowska, E., Słoniewski, K., Krzyżewski, J., and Zwierzchowski, L.: Effect of the DGAT1 gene polymorphism on milk production traits in Black-and-White (Friesian) cows, Anim. Sci. Pap. Rep., 23, 189–197, 2005.
Sun, D., Jia, J., Ma, Y., Zhang, Y., Wang, Y., Yu, Y., and Zhang, Y.: Effects of DGAT1 and GHR on milk yield and milk composition in the Chinese dairy population, Anim. Genet., 40, 997–1000, https://doi.org/10.1111/j.1365-2052.2009.01945.x, 2009.
Tang, Y., Zhang, J., Li, W., Liu, X., Chen, S., Mi, S., Yang, J., Teng, J., Fang, L., and Yu, Y.: Identification and characterization of whole blood gene expression and splicing quantitative trait loci during early to mid-lactation of dairy cattle, BMC Genomics, 25, 445, https://doi.org/10.1186/s12864-024-10346-7, 2024.
Thaller, G., Kramer, W., Winter, A., Kaupe, B., Erhardt, G., and Fries, R.: Effects of DGAT1 variants on milk production traits in German cattle breeds, J. Anim. Sci., 81, 1911–1918, https://doi.org/10.2527/2003.8181911x, 2003.
Tumino S, Criscione A, Moltisanti V, Marletta, D., Bordonaro, S., Avondo, M., and Valenti, B.: Feeding system resizes the effects of dgat1 polymorphism on milk traits and fatty acids composition in modicana cows, Animals, 11, 1616, https://doi.org/10.3390/ani11061616, 2021.
Valenti, B., Criscione, A., Moltisanti, V., Bordonaro, S., De Angelis, A., Marletta, D., Di Paola, F., and Avondo, M.: Genetic polymorphisms at candidate genes affecting fat content and fatty acid composition in Modicana cows: effects on milk production traits in different feeding systems, Animal, 13, 1–9, https://doi.org/10.1017/S1751731118002604, 2019.
Vanbergue, E., Peyraud, J.-L., Guinard-Flament, J., Charton, C., Barbey, S., Lefebvre, R., Gallard, Y., and Hurtaud, C.: Effects of DGAT1 K232A polymorphism and milking frequency on milk composition and spontaneous lipolysis in dairy cows, J. Dairy Sci., 99, 5739–5749, https://doi.org/10.3168/jds.2015-10731, 2016.
Van Gastelen, S., Visker, M., Edwards, J., Antunes-Fernandes, E. C., Hettinga, K. A., Alferink, S. J. J., Hendriks, W. H., Bovenhuis, H., Smidt, H., and Dijkstra, J.: Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows, J. Dairy Sci., 100, 8939–8957, https://doi.org/10.3168/jds.2016-12367, 2017.
Xu, Q., Fan, Y., Mauck, J., Loor, J. J., Sun, X., Jia, H., Li, X., and Xu, C.: Role of diacylglycerol O-acyltransferase 1 (DGAT1) in lipolysis and autophagy of adipose tissue from ketotic dairy cows, J. Dairy Sci., 107, 5150–5161, https://doi.org/10.3168/jds.2023-24471, 2024.
Weller, J., Golik, M., Seroussi, E., Ezra, E., and Ron, M.: Population-wide analysis of a QTL affecting milk-fat production in the Israeli Holstein population, J. Dairy Sci., 86, 2219–2227, https://doi.org/10.3168/jds.S0022-0302(03)73812-0, 2003.
Winter, A., Krämer, W., Werner, F. A., Kollers, S., Kata, S., Durstewitz, G., Buitkamp, J., Womack, J. E., Thaller, G., and Fries, R.: Association of a lysine-232 alanine polymorphism in a bovine gene encoding acyl-CoA: diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content, P. Natl. Acad. Sci. USA, 99, 9300–9305, 2002.
Short summary
DGAT1 influences milk yield and quality. Prior studies had limitations: small sample sizes, no environmental effects, and poor lactation records. Our study of 1104 Holstein Friesian and Jersey cows used polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) and Sanger sequencing for genotyping. We evaluate genotypic and allelic frequencies, population genetics, and phenotypic effects. Our findings offer more reliable interpretations at both phenotypic and genotypic levels.
DGAT1 influences milk yield and quality. Prior studies had limitations: small sample sizes, no...