Articles | Volume 65, issue 4
https://doi.org/10.5194/aab-65-427-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-65-427-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intrinsic challenges of neonatal adaptation in swine
Benjamin Diehl
Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, 35392 Giessen, Germany
Michael Oster
Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
Andreas Vernunft
Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
Hartwig Bostedt
Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, 35392 Giessen, Germany
Related authors
No articles found.
Yara Suliman, Frank Becker, Armin Tuchscherer, and Klaus Wimmers
Arch. Anim. Breed., 63, 145–154, https://doi.org/10.5194/aab-63-145-2020, https://doi.org/10.5194/aab-63-145-2020, 2020
Short summary
Short summary
Male fertility is important in horse breeding and depends largely on the quality of the sperm. Horses are seasonal breeders with a natural breeding season that begins in spring and ends in midsummer. This study shows that there is an interaction between seasonal effects and endogenous effects on semen quality and fertility. Semen quality of fertile stallions is more influenced by the seasons than that of subfertile stallions.
Related subject area
Subject: Physiology | Animal: Pigs
Incidence of dystocia at piglet level in cloprostenol-induced farrowings and associated risk factors
Characteristics of Tibetan pig lung tissue in response to a hypoxic environment on the Qinghai–Tibet Plateau
“Sex” and body region effects on bone mineralization in male pigs
The relationships between transforming growth factors β and free thyroxine and progesterone in the ovarian cysts, preovulatory follicles, and the serum of sows
Identification of TRPM6 and TRPM7 expression changes in response to a diet supplemented with inulin in porcine kidney
Nguyen Hoai Nam and Peerapol Sukon
Arch. Anim. Breed., 65, 97–103, https://doi.org/10.5194/aab-65-97-2022, https://doi.org/10.5194/aab-65-97-2022, 2022
Short summary
Short summary
Dystocia in swine is a risky condition that causes stress and pain to sows and piglets. This study investigated factors affecting dystocia in induced farrowings, thereby providing more knowledge into this underestimated issue. Results showed that dystocia is common in swine; relative birth order, birth weight, and stillbirth were the most significant risk factors for dystocia. These data suggested that last one-third of farrowing process is most important stage to be supervised.
Yanan Yang, Caixia Gao, Tianliang Yang, Yuzhu Sha, Yuan Cai, Xinrong Wang, Qiaoli Yang, Chengze Liu, Biao Wang, and Shengguo Zhao
Arch. Anim. Breed., 64, 283–292, https://doi.org/10.5194/aab-64-283-2021, https://doi.org/10.5194/aab-64-283-2021, 2021
Short summary
Short summary
Tibetan pigs are well adapted to high-altitude environments with a set of physiological features for more efficient blood flow for oxygen delivery under hypobaric hypoxia. We established the anatomy, physiology and molecular characteristics of the lung adaptive intelligence. Our finding suggest that the lung genetic mechanism of hypoxic adaptation in Tibetan pigs is valuable to understand.
Maren Bernau, Juliane Schrott, Sebastian Schwanitz, Lena Sophie Kreuzer, and Armin Manfred Scholz
Arch. Anim. Breed., 63, 103–111, https://doi.org/10.5194/aab-63-103-2020, https://doi.org/10.5194/aab-63-103-2020, 2020
Short summary
Short summary
The present study evaluated bone mineralisation (in terms of bone mineral density (BMD) and bone mineral content (BMC)) and body composition traits using dual-energy X-ray absorptiometry three times during growth in entire boars (EB), immunocastrated boars (IB), and surgically castrated boars (SB). Nine body regions were analysed for bone mineral traits and compared for the sex types. Significant differences were found regarding BMD among EB, IB, and SB and regarding different body regions.
Tomasz Stankiewicz
Arch. Anim. Breed., 60, 131–136, https://doi.org/10.5194/aab-60-131-2017, https://doi.org/10.5194/aab-60-131-2017, 2017
Paulina Robak, Małgorzata Ożgo, Katarzyna Michałek, Agnieszka Kolasa-Wołosiuk, Marcin Taciak, Marcin Barszcz, and Marta Marynowska
Arch. Anim. Breed., 59, 267–274, https://doi.org/10.5194/aab-59-267-2016, https://doi.org/10.5194/aab-59-267-2016, 2016
Cited articles
Adams, S. H. and Odle, J.: Plasma beta-hydroxybutyrate after octanoate challenge: attenuated ketogenic capacity in neonatal swine, Am. J. Physiol.-Reg. I., 265, 761–765, 1993.
Adams, S. H. and Odle, J.: Acetogenesis does not replace ketogenesis in fasting piglets infused with hexanoate, Am. J. Physiol.-Endoc. M., 274, 963–970, 1998.
Adams, S. H., Lin, X., Yu, X. X., Odle, J., and Drackley, J. K.: Hepatic fatty acid metabolism in pigs and rats: major differences in endproducts, O2 uptake, and beta-oxidation, Am. J. Physiol.-Reg. I., 272, 1641–1646, 1997.
Algers, B. and Jensen, P.: Thermal microclimate in winter farrowing nests of free-ranging domestic pigs, Livest. Prod. Sci., 25, 177–181, 1990.
Alonso-Spilsbury, M., Mota-Rojas, D., Villanueva-Garcia, D., Martinez-Burnes, J., Orozco, H., Ramirez-Necoechea, R., Mayagoitia, A. L., and Trujillo, M. E.: Perinatal asphyxia pathophysiology in pig and human: a review, Anim. Reprod. Sci., 90, 1–30, https://doi.org/10.1016/j.anireprosci.2005.01.007, 2005.
Bal, N. C., Maurya, S. K., Sopariwala, D. H., Sahoo, S. K., Gupta, S. C., Shaikh, S. A., Pant, M., Rowland, L. A., Bombardier, E., and Goonasekera, S. A.: Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals, Nat. Med., 18, 1575–1579, 2012.
Bal, N. C., Maurya, S. K., Singh, S., Wehrens, X. H., and Periasamy, M.: Increased reliance on muscle-based thermogenesis upon acute minimization of brown adipose tissue function, J. Biol. Chem., 291, 17247–17257, 2016.
Baxter, E. M., Lawrence, A. B., and Edwards, S. A.: Alternative farrowing accommodation: welfare and economic aspects of existing farrowing and lactation systems for pigs, Animal, 6, 96–117, 2012.
Baxter, E. M., Rutherford, K. M. D., D'eath, R. B., Arnott, G., Turner, S. P., Sandøe, P., Moustsen, V. A., Thorup, F., Edwards, S. A., and Lawrence, A. B.: The welfare implications of large litter size in the domestic pig II: management factors, Anim. Welfare, 22, 219–238, 2013.
Berg, F., Gustafson, U., and Andersson, L.: The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets, PLoS Genet., 2, 1178–1181, 2006.
Bergelin, I. and Karlsson, B.: Functional structure of the glomerular filtration barrier and the proximal tubuli in the developing foetal and neonatal pig kidney, Anat. Embryol., 148, 223–234, 1975.
Berthon, D., Herpin, P., and Le Dividich, J.: Shivering thermogenesis in the neonatal pig, J. Therm. Biol., 19, 413–418, 1994.
Berthon, D., Herpin, P., Le Dividich, J., and Dauncey, M.: Interactive effects of thermal environment and energy intake on thyroid hormone metabolism in newborn pigs, Neonatology, 69, 51–59, 1996.
Bird, P. and Hartmann, P.: Changes in the concentration of fructose in the blood of piglets of different ages after doses of fructose, fructose plus glucose, and sucrose, Brit. J. Nutr., 76, 399–407, 1996.
Björkman, S., Oliviero, C., Rajala-Schultz, P. J., Soede, N. M., and Peltoniemi, O. A. T.: The effect of litter size, parity and farrowing duration on placenta expulsion and retention in sows, Theriogenology, 92, 36–44, https://doi.org/10.1016/j.theriogenology.2017.01.003, 2017.
Blim, S. M.: Über das Geburtsgeschehen bei Schweinen einer hochproliferativen Linie unter verschiedenen Haltungsbedingungen: Quantifizierung der partusrelevanten Belastung anhand klinischer, stoffwechselbezogener und ethologischer Parameter, Universitätsbibliothek Gießen, http://geb.uni-giessen.de/geb/volltexte/2020/15523/ (last access: 20 December 2021), ISBN/ISSN 978-3-86345-551-4, 2020.
Boonraungrod, N., Sutthiya, N., Kumwan, P., Tossakui, P., Nuntapaitoon, M., Muns, R., and Tummaruk, P.: Control of parturition in swine using PGF2α in combination with carbetocin, Livest. Sci., 214, 1–8, 2018.
Bostedt, H.: Klinische Einteilung der postnatalen Entwicklung, in: Reproduktionsmedizin und Neonatologie von Hund und Katze, edited by: Günzel-Apel, A.-R. and Bostedt, H., Schattauer Verlag, Stuttgart, 542–544, ISBN 978-3-7945-2249-1, 2016.
Bove, E. L. and Stammers, A. H.: Recovery of left ventricular function after hypothermic global ischemia: age-related differences in the isolated working rabbit heart, J. Thorac. Cardiov. Sur., 91, 115–122, 1986.
Boyd, R., Britton, R., Knoche, H., Moser, B., Peo, Jr., E., and Johnson, R.: Oxidation rates of major fatty acids in fasting neonatal pigs, J. Anim. Sci., 55, 95–100, 1982.
Brooks, A., Hagan, D., and Howe, D.: Neuroendocrine regulation of pituitary–adrenal function during fetal life, Eur. J. Endocrinol., 135, 153–165, 1996.
Bünger, B., Bünger, U., and Lemke, E.: Verhaltensbiologische Vitalitätseinschätzung von Ferkeln mit hoch- und mittelgradiger konnataler Eisenmangelanämie, Monatsh. Veterinarmed., 43, 583–587, 1988.
Burrin, D., Davis, T., Fiorotto, M., and Reeds, P.: Role of milk-borne vs. endogenous insulin-like growth factor I in neonatal growth, J. Anim. Sci., 75, 2739–2743, 1997.
Casellas, J., Noguera, J., Varona, L., Sánchez, A., Arqué, M., and Piedrafita, J.: Viability of Iberian × Meishan F2 newborn pigs. II. Survival analysis up to weaning, J. Anim. Sci., 82, 1925–1930, 2004.
Comline, R. and Silver, M.: A comparative study of blood gas tensions, oxygen affinity and red cell 2, 3 DPG concentrations in foetal and maternal blood in the mare, cow and sow, J. Physiol., 242, 805–826, 1974.
Damm, B. I., Forkman, B., and Pedersen, L. J.: Lying down and rolling behaviour in sows in relation to piglet crushing, Appl. Anim. Behav. Sci., 90, 3–20, 2005.
Darcy-Vrillon, B., Cherbuy, C., Morel, M.-T., Durand, M., and Duée, P.-H.: Short chain fatty acid and glucose metabolism in isolated pig colonocytes: modulation by , Mol. Cell Biochem., 156, 145–151, 1996.
Dawes, G. and Mott, J. C.: The increase in oxygen consumption in the lamb after birth, J. Physiol., 146, 295–315, 1959.
De Vos, M., Huygelen, V., Hesta, M., Willemen, S. A., Fransen, E., Casteleyn, C., Van Cruchten, S., and Van Ginneken, C.: Birthweight has no influence on chemical body composition and muscle energy stores in suckling piglets, Anim. Prod. Sci., 56, 844–849, 2015.
Devillers, N., Farmer, C., Le Dividich, J., and Prunier, A.: Variability of colostrum yield and colostrum intake in pigs, Animal, 1, 1033–1041, 2007.
Devillers, N., Le Dividich, J., and Prunier, A.: Influence of colostrum intake on piglet survival and immunity, Animal, 5, 1605–1612, 2011.
Eastmann, N.: Mount Everest in utero, Am. J. Obstet. Gynecol., 67, 701–711, 1954.
Edwards, L. E., Plush, K. J., Ralph, C. R., Morrison, R. S., Acharya, R. Y., and Doyle, R. E.: Enrichment with lucerne hay improves sow maternal behaviour and improves piglet survival, Animals, 9, 558, 2019.
Elliot, J. and Lodge, G.: Body composition and glycogen reserves in the neonatal pig during the first 96 hours postpartum, Can. J. Anim. Sci., 57, 141–150, 1977.
Fainberg, H. P., Bodley, K., Bacardit, J., Li, D., Wessely, F., Mongan, N. P., Symonds, M. E., Clarke, L., and Mostyn, A.: Reduced neonatal mortality in Meishan piglets: a role for hepatic fatty acids?, PLoS One, 7, e49101, https://doi.org/10.1371/journal.pone.0049101, 2012.
Frazier, K. S.: Species differences in renal development and associated developmental nephrotoxicity, Birth Defects Res., 109, 1243–1256, 2017.
Friis, C.: Postnatal development of the pig kidney: ultrastucure of the glomerulus and the proximal tubule, J. Anat., 130, 513–526, 1980.
Fyda, T. J., Spencer, C., Jastroch, M., and Gaudry, M. J.: Disruption of thermogenic UCP1 predated the divergence of pigs and peccaries, J. Exp. Biol., 223, https://doi.org/10.1242/jeb.223974, 2020.
Gaudry, M. J., Jastroch, M., Treberg, J. R., Hofreiter, M., Paijmans, J. L., Starrett, J., Wales, N., Signore, A. V., Springer, M. S., and Campbell, K. L.: Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades, Sci. Adv., 3, e1602878, https://doi.org/10.1126/sciadv.1602878, 2017.
Gerten, K. A., Coonrod, D. V., Bay, R. C., and Chambliss, L. R.: Cesarean delivery and respiratory distress syndrome: does labor make a difference?, Am. J. Obstet. Gynecol., 193, 1061–1064, 2005.
Gourley, K. M., DeRouchey, J. M., Tokach, M. D., Dritz, S. S., Goodband, R. D., and Woodworth, J. C.: Associations between piglet umbilical blood hematological criteria, birth order, birth interval, colostrum intake, and piglet survival, J. Anim. Sci., 98, 1–8, 2020.
Groppetti, D., Pecile, A., Del Carro, A., Copley, K., Minero, M., and Cremonesi, F.: Evaluation of newborn canine viability by means of umbilical vein lactate measurement, apgar score and uterine tocodynamometry, Theriogenology, 74, 1187–1196, 2010.
Hansen, A. J.: Extracellular potassium concentration in juvenile and adult rat brain cortex during anoxia, Acta Physiol. Scand., 99, 412–420, 1977.
Herpin, P., Le Dividich, J., and Amaral, N.: Effect of selection for lean tissue growth on body composition and physiological state of the pig at birth, J. Anim. Sci., 71, 2645–2653, 1993.
Herpin, P., Le Dividich, J., Hulin, J. C., Fillaut, M., De Marco, F., and Bertin, R.: Effects of the level of asphyxia during delivery on viability at birth and early postnatal vitality of newborn pigs, J. Anim. Sci., 74, 2067–2075, 1996.
Herpin, P., Damon, M., and Le Dividich, J.: Development of thermoregulation and neonatal survival in pigs, Livest. Prod. Sci., 78, 25–45, 2002.
Herpin, P., Vincent, A., and Damon, M.: Effect of breed and body weight on thermoregulatory abilities of European (Piétrain × (Landrace × Large White)) and Chinese (Meishan) piglets at birth, Livest. Prod. Sci., 88, 17–26, https://doi.org/10.1016/j.livprodsci.2003.11.006, 2004.
Hrupka, B., Leibbrandt, V., Crenshaw, T., and Benevenga, N.: The effect of thermal environment and age on neonatal pig behavior, J. Anim. Sci., 78, 583–591, 2000.
Juul-Madsen, H. R., Jensen, K. H., Nielsen, J., and Damgaard, B. M.: Ontogeny and characterization of blood leukocyte subsets and serum proteins in piglets before and after weaning, Vet. Immunol. Immunop., 133, 95–108, 2010.
Kabalin, A. E., Balenović, T., Šperanda, M., Milinković-Tur, S., Štoković, I., Menčik, S., Maurić, M., and Pavičić, Ž.: Serum biochemical parameters in suckling piglets with low and average birth mass, Vet. Arhiv, 87, 171–184, 2017.
Kaciuba-Uścilko, H.: The effect of previous thyroxine administration on the metabolic response to adrenaline in new-born pigs, Neonatology, 19, 220–226, 1971.
KilBride, A., Mendl, M., Statham, P., Held, S., Harris, M., Cooper, S., and Green, L.: A cohort study of preweaning piglet mortality and farrowing accommodation on 112 commercial pig farms in England, Prev. Vet. Med., 104, 281–291, 2012.
Kirkden, R., Broom, D., and Andersen, I.: Piglet mortality: the impact of induction of farrowing using prostaglandins and oxytocin, Anim. Reprod. Sci., 138, 14–24, 2013.
König, N. L., Wähner, M., Seeger, J., Sigmarsson, H. L., and Kauffold, J.: An investigation into uterine capacity based on litter and placental characteristics in two sow lines with different prolificacy (Danish Landrace × Danish Yorkshire versus German Saddleback), Reprod. Domest. Anim., 56, 34–45, 2021.
Koos, B. J. and Rajaee, A.: Fetal Breathing Movements and Changes at Birth, in: Advances in Fetal and Neonatal Physiology. Advances in Experimental Medicine and Biology, vol. 814, edited by: Zhang L. and Ducsay C., Springer, New York, NY, https://doi.org/10.1007/978-1-4939-1031-1_8, 2014.
Krogh, A.: The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J. Physiol., 52, 409–415, 1919.
Langendijk, P. and Plush, K.: Parturition and its relationship with stillbirths and asphyxiated piglets, Animals, 9, 885, 2019.
Langendijk, P., Fleuren, M., van Hees, H., and van Kempen, T.: The Course of Parturition Affects Piglet Condition at Birth and Survival and Growth through the Nursery Phase, Animals, 8, 60, https://doi.org/10.3390/ani8050060, 2018.
Le Dividich, J., Charneca, R., and Thomas, F.: Relationship between birth order, birth weight, colostrum intake, acquisition of passive immunity and pre-weaning mortality of piglets, Span. J. Agric. Res., 15, e0603, https://doi.org/10.5424/sjar/2017152-9921, 2017.
LeBlanc, J. and Mount, L.: Effects of noradrenaline and adrenaline on oxygen consumption rate and arterial blood pressure in the newborn pig, Nature, 217, 77–78, 1968.
Leeb, C., Rudolph, G., Bochicchio, D., Edwards, S., Früh, B., Holinger, M., Holmes, D., Illmann, G., Knop, D., Prunier, A., Rousing, T., Winckler, C., and Dippel, S.: Effects of three husbandry systems on health, welfare and productivity of organic pigs, Animal, 13, 2025–2033, 2019.
Lehn, D.: Untersuchungen zum Ablauf der peripartalen Periode des Schweines in verschiedenen Haltungsbedingungen unter besonderer Berücksichtigung des endokrinen Status und ethologischer Merkmale, Universitätsbibliothek Gießen, https://doi.org/10.22029/jlupub-544, 2020.
Lemacher, S. and Bostedt, H.: The development of plasma iron concentration and hemoglobin content in piglets in the first three days of life and the significance of prenatal anemia, Tierarztl. Prax., 22, 39–45, 1994.
Lemacher, S. and Bostedt, H.: Development of the iron supply in suckling pigs under variable iron supplementation with regard to environmental conditions, Tierarztl. Prax., 23, 457–464, 1995.
Lepine, A., Boyd, R., and Welch, J.: Effect of colostrum intake on plasma glucose, non-esterified fatty acid and glucoregulatory hormone patterns in the neonatal pig, Domest. Anim. Endocrin., 6, 231–241, 1989.
Lewis, D., Oren, S., Wang, X., Moyer, M., Beitz, D., Knight, T., and Mott, G.: Developmental changes in cholesterol 7α- and 27-hydroxylases in the piglet, J. Anim. Sci., 78, 943–951, 2000.
Lin, X., Shim, K., and Odle, J.: Carnitine palmitoyltransferase I control of acetogenesis, the major pathway of fatty acid β-oxidation in liver of neonatal swine, Am. J. Physiol.-Reg. I., 298, 1435–1443, 2010.
Lohmeier, R. Y., Grimberg-Henrici, C. G. E., Büttner, K., Burfeind, O., and Krieter, J.: Farrowing pens used with and without short-term fixation impact on reproductive traits of sows, Livest. Sci., 231, 103889, https://doi.org/10.1016/j.livsci.2019.103889, 2020.
Lossec, G., Duchamp, C., Lebreton, Y., and Herpin, P.: Postnatal changes in regional blood flow during cold-induced shivering in sow-reared piglets, Can. J. Physiol. Pharm., 77, 414–421, 1999.
Louveau, I., Dauncey, M., and Le Dividich, J.: Regulation of development by nutrition and by the somatotrophic and thyroid axes in the neonatal pig, Livest. Prod. Sci., 66, 121–131, 2000.
Louveau, I., Perruchot, M.-H., Bonnet, M., and Gondret, F.: Invited review: Pre-and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology, Animal, 10, 1839–1847, 2016.
Malmkvist, J., Pedersen, L. J., Damgaard, B. M., Thodberg, K., Jørgensen, E., and Labouriau, R.: Does floor heating around parturition affect the vitality of piglets born to loose housed sows?, Appl. Anim. Behav. Sci., 99, 88–105, https://doi.org/10.1016/j.applanim.2005.10.007, 2006.
Mayfield, S. R., Shaul, P. W., Oh, W., and Stonestreet, B. S.: Anemia blunts the thermogenic response to environmental cold stress in newborn piglets, Pediatr. Res., 21, 482–486, 1987.
McCance, R. and Widdowson, E. M.: The effect of lowering the ambient temperature on the metabolism of the new-born pig, J. Physiol., 147, 124, 1959.
Mellor, D. and Cockburn, F.: A comparison of energy metabolism in the new-born infant, piglet and lamb, Q. J. Exp. Physiol., 71, 361–379, 1986.
Mellor, D. and Lentle, R. G.: Survival implications of the development of behavioural responsiveness and awareness in different groups of mammalian young, New Zeal. Vet. J., 63, 131–140, 2015.
Mersmann, H.: Metabolic patterns in the neonatal swine, J. Anim. Sci., 38, 1022–1030, 1974.
Mersmann, H. and Phinney, G.: Glycerokinase activity in liver and adipose tissue of developing swine (Sus domesticus), Int. J. Biochem., 4, 575–579, 1973.
Mostyn, A., Sebert, S., Litten, J. C., Perkins, K. S., Laws, J., Symonds, M. E., and Clarke, L.: Influence of porcine genotype on the abundance of thyroid hormones and leptin in sow milk and its impact on growth, metabolism and expression of key adipose tissue genes in offspring, J. Endocrinol., 190, 631–639, 2006.
Mota-Rojas, D., Orozco-Gregorio, H., Villanueva-Garcia, D., Bonilla-Jaime, H., Suarez-Bonilla, X., Hernandez-Gonzalez, R., Roldan-Santiago, P., and Trujillo-Ortega, M.: Foetal and neonatal energy metabolism in pigs and humans: a review, Vet. Med. (Praha), 56, 215–225, 2011.
Mount, L.: The metabolic rate of the new-born pig in relation to environmental temperature and to age, J. Physiol., 147, 333–345, 1959.
Mount, L.: The thermal insulation of the new-born pig, J. Physiol., 168, 698–705, 1963.
Mount, L.: The respiratory quotient in the newborn pig, Brit. J. Nutr., 23, 407–413, 1969.
Mount, L. E.: The climatic physiology of the pig, The Climatic Physiology of the Pig, ISBN 9780713141405, 0713141409, 1968.
Muro, B. B., Carnevale, R. F., Andretta, I., Leal, D. F., Monteiro, M. S., Poor, A. P., Almond, G. W., and Garbossa, C. A.: Effects of uterotonics on farrowing traits and piglet vitality: a systematic review and meta-analysis, Theriogenology, 161, 151–160, 2020.
Nagel, C., Aurich, C., and Aurich, J.: Stress effects on the regulation of parturition in different domestic animal species, Anim. Reprod. Sci., 207, 153–161, 2019.
Nowack, J., Vetter, S. G., Stalder, G., Painer, J., Kral, M., Smith, S., Le, M. H., Jurcevic, P., Bieber, C., and Arnold, W.: Muscle nonshivering thermogenesis in a feral mammal, Sci. Rep.-UK, 9, 1–10, 2019.
Nuntapaitoon, M., Muns, R., and Tummaruk, P.: Newborn traits associated with pre-weaning growth and survival in piglets, Asian Austral. J. Anim., 31, 237–244, 2018.
Pandolfi, F., Edwards, S., Robert, F., and Kyriazakis, I.: Risk factors associated with the different categories of piglet perinatal mortality in French farms, Prev. Vet. Med., 137, 1–12, 2017.
Panzardi, A., Bernardi, M., Mellagi, A., Bierhals, T., Bortolozzo, F., and Wentz, I.: Newborn piglet traits associated with survival and growth performance until weaning, Prev. Vet. Med., 110, 206–213, 2013.
Pedersen, L., Berg, P., Jørgensen, G., and Andersen, I.: Neonatal piglet traits of importance for survival in crates and indoor pens, J. Anim. Sci., 89, 1207–1218, 2011.
Pietruszka, A., Der, A., and Matysiak, B.: Analysis of gestation length and its influence on the reproductive performance of crossbred sows kept on a large-scale pig farm, Sci. Ann. Polish Soc. Anim. Prod., 16, 29–36, 2020.
Quesnel, H., Brossard, L., Valancogne, A., and Quiniou, N.: Influence of some sow characteristics on within-litter variation of piglet birth weight, Animal, 2, 1842–1849, 2008.
Quesnel, H., Farmer, C., and Devillers, N.: Colostrum intake: Influence on piglet performance and factors of variation, Livest. Sci., 146, 105–114, 2012.
Randall, G.: The relationship of arterial blood pH and pCO2 to the viability of the newborn piglet, Can. J. Comp. Med., 35, 141–146, 1971.
Randall, G.: Influence of fetal numbers and hypophysectomy on the length of gestation in the pig, Can. J. Anim. Sci., 67, 1125–1127, 1987.
Randall, G. C.: Perinatal adaptation in animals, Anim. Reprod. Sci., 28, 309–318, 1992.
Rangstrup-Christensen, L., Krogh, M. A., Pedersen, L., and Sørensen, J. T.: Sow level risk factors for early piglet mortality and crushing in organic outdoor production, Animal, 12, 810–818, 2018a.
Rangstrup-Christensen, L., Schild, S.-L. A., Pedersen, L. J., and Sørensen, J. T.: Causes of preweaning mortality in organic outdoor sow herds, Res. Vet. Sci., 118, 171–180, 2018b.
Rootwelt, V.: Postpartum deaths: Piglet, placental and umbilical characteristics, J. Anim. Sci., 91, 2647–2656, https://doi.org/10.2527/jas.2012-5531, 2013.
Sasaki, Y. and Koketsu, Y.: Variability and repeatability in gestation length related to litter performance in female pigs on commercial farms, Theriogenology, 68, 123–127, 2007.
Schild, S.-L., Foldager, L., Bonde, M., Andersen, H.-L., and Pedersen, L.: Does hut climate matter for piglet survival in organic production?, Animal, 13, 826–834, 2019.
Schild, S.-L. A., Foldager, L., Rangstrup-Christensen, L., and Pedersen, L. J.: Characteristics of piglets born by two highly prolific sow hybrids, Front. Vet. Sci., 7, 355, 2020.
Schwerin, M., Kanitz, E., Tuchscherer, M., Brussow, K. P., Nurnberg, G., and Otten, W.: Stress-related gene expression in brain and adrenal gland of porcine fetuses and neonates, Theriogenology, 63, 1220–1234, 2005.
Silver, M.: Prenatal maturation, the timing of birth and how it may be regulated in domestic animals, Exp. Physiol., 75, 285–307, 1990.
Singer, D.: Neonatal tolerance to hypoxia: a comparative-physiological approach, Comp. Biochem. Phys. A, 123, 221–234, 1999.
Ślebodziński, A.: Interaction between thyroid hormone and thyroxine-binding proteins in the early neonatal period, J. Endocrinol., 32, 45–57, 1965.
Ślebodziński, A.: Metabolic response to thyroxine in the newborn pig, Neonatology, 36, 198–205, 1979.
Snyder, G. K.: Respiratory adaptations in diving mammals, Resp. Physiol., 54, 269–294, 1983.
Steele, N., Frobish, L., Miller, L., and Young, E.: Certain aspects on the utilization of carbohydrates by the neonatal pig, J. Anim. Sci., 33, 983–986, 1971.
Steele, N., Rosebrough, R., and McMurtry, J.: Fetal hepatic and neural substrate utilization as affected by induced nutritional ketosis in swine, J. Anim. Sci., 58, 1388–1395, 1984.
Steinhardt, M., Bünger, U., and Furcht, G.: Zum Eisenbedarf des Schweines in den ersten 2 Lebensmonaten, Arch. Exp. Vet. Med., 38, 472–482, 1984.
Svendsen, L., Weström, B., Svendsen, J., Olsson, A.-C., and Karlsson, B.: Blood serum characteristics of newborn pigs: Comparison of unaffected pigs with pigs belonging to five mortality groups, Acta Vet. Scand., 32, 287–299, 1991.
Szymeczko, R., Kapelański, W., Piotrowska, A., Dybała, J., Bogusławska-Tryk, M., Burlikowska, K., Hertig, I., Sassek, M., Pruszyńska-Oszmałek, E., and Maćkowiak, P.: Changes in the content of major proteins and selected hormones in the blood serum of piglets during the early postnatal period, Folia Biol.-Prague, 57, 97–103, 2008.
Taverne, M., Naaktgeboren, C., Elsaesser, F., Forsling, M., Van der Weyden, G., Ellendorff, F., and Smidt, D.: Myometrial electrical activity and plasma concentrations of progesterone, estrogens and oxytocin during late pregnancy and parturition in the miniature pig, Biol. Reprod., 21, 1125–1134, 1979.
Theil, P. K., Lauridsen, C., and Quesnel, H.: Neonatal piglet survival: impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk, Animal, 8, 1021–1030, 2014.
Thodberg, K., Jensen, K. H., Herskin, M. S., and Jørgensen, E.: Influence of environmental stimuli on nest building and farrowing behaviour in domestic sows, Appl. Anim. Behav. Sci., 63, 131–144, 1999.
Trujillo-Ortega, M., Mota-Rojas, D., Juarez, O., Villanueva-Garcia, D., Roldan-Santiago, P., Becerril-Herrera, M., Hernandez-Gonzalez, R., Mora-Medina, P., Alonso-Spilsbury, M., and Rosales, A.: Porcine neonates failing vitality score: physio-metabolic profile and latency to the first teat contact, Czech J. Anim. Sci., 56, 499–508, 2011.
Tuchscherer, M., Puppe, B., Tuchscherer, A., and Tiemann, U.: Early identification of neonates at risk: traits of newborn piglets with respect to survival, Theriogenology, 54, 371–388, 2000.
van Dijk, A. J., van Rens, B. T., van der Lende, T., and Taverne, M. A.: Factors affecting duration of the expulsive stage of parturition and piglet birth intervals in sows with uncomplicated, spontaneous farrowings, Theriogenology, 64, 1573–1590, https://doi.org/10.1016/j.theriogenology.2005.03.017, 2005.
van Dijk, A. J., van der Lende, T., and Taverne, M. A.: Acid-base balance of umbilical artery blood of liveborn piglets at birth and its relation with factors affecting delivery of individual piglets, Theriogenology, 66, 1824–1833, https://doi.org/10.1016/j.theriogenology.2006.04.035, 2006.
Vande Pol, K. D., Tolosa, A. F., Shull, C. M., Brown, C. B., Alencar, S. A., and Ellis, M.: Effect of drying and warming piglets at birth on preweaning mortality, Transl. Anim. Sci., 4, 1–12, 2020.
Vongsariyavanich, S., Soontornpornnawin, P., Sakulsirajit, R., Suriyapornchaikul, C., Therarachatamongkol, S., Boonraungrod, N., Pearodwong, P., and Tummaruk, P.: Effect of carbetocin administration during the mid-period of parturition on farrowing duration, newborn piglet characteristics, colostrum yield and milk yield in hyperprolific sows, Theriogenology, 172, 150–159, 2021.
Wähner, M. and Hühn, U.: Control of parturition in sows by using a combined treatment with Cloprostenol plus Depotocin®, Arch. Tierzucht, 44, 151–154, 2001.
Walser, K. and Bostedt, H.: Neugeborenen- und Säuglingskunde der Tiere, Enke Verlag, Stuttgart, ISBN: 3432983816, 2008.
Ward, S. A., Kirkwood, R., and Plush, K.: Effects of oxytocin and carbetocin on farrowing performance, Anim. Reprod. Sci., 205, 88–93, 2019.
Weary, D. M., Pajor, E. A., Thompson, B. K., and Fraser, D.: Risky behaviour by piglets: a trade off between feeding and risk of mortality by maternal crushing?, Anim. Behav., 51, 619–624, 1996.
Wehrend, A., Stratmann, N., Failing, K., and Bostedt, H.: Influence of partus induction on the pH value in the blood of newborn piglets, J. Vet. Med. A, 52, 472–473, 2005.
Wester, T. J., Davis, T. A., Fiorotto, M. L., and Burrin, D. G.: Exogenous growth hormone stimulates somatotropic axis function and growth in neonatal pigs, Am. J. Physiol.-Endoc. M., 274, E29–E37, 1998.
Wooding, P. and Burton, G.: 5 Eutheria: Epitheliochorial Placentation Pig and Horse, in: Comparative Placentation: Structures, Functions and Evolution, edited by: Wooding, P. and Burton, G., Springer Science & Business Media, ISBN: 978-3-540-78797-6, 2008.
Xia, Y. and Haddad, G. G.: Postnatal development of voltage sensitive Na+ channels in rat brain, J. Comp. Neurol., 345, 279–287, 1994.
Xiong, Y., Gates, R. S., Cooper, N. C., and Ellis, M.: Neonatal piglet core body temperature model from surface temperature and environment measurements, 10th International Livestock Environment Symposium (ILES X), 1, 2018.
Yun, J., Swan, K.-M., Vienola, K., Farmer, C., Oliviero, C., Peltoniemi, O., and Valros, A.: Nest-building in sows: effects of farrowing housing on hormonal modulation of maternal characteristics, Appl. Anim. Behav. Sci., 148, 77–84, 2013.
Zaleski, H. M. and Hacker, R. R.: Comparison of viability scoring and blood gas analysis as measures of piglet viability, Can. J. Anim. Sci., 73, 649–653, 1993.
Zaremba, W., Udluft, T., Failing, K., and Bostedt, H.: Analysis of the course of birth and the early postpartal period in pigs after hormonal partus induction with special consideration of complication rate, Anim. Vet. Sci., 7, 29–39, https://doi.org/10.11648/j.avs.20190702.11, 2019.
Short summary
Piglet losses in pig farming remain a concern and need to be addressed through the implementation of new sustainable breeding and management strategies. Indeed, piglets are particularly vulnerable in the first days of life. This review provides an overview of the current knowledge on piglet responses during adaptation to life outside the uterus, which is particularly important for improving the vitality of newborn piglets and animal welfare in pig production in various farming systems.
Piglet losses in pig farming remain a concern and need to be addressed through the...