Bhonsle, D., Chourasia, S. K., Ingole, S. P., Pathak, R., and Sahu, S. S.: Studies on Growth Performance of Improved Varieties of Chicken, J. Anim. Res., 8, 855–860, https://doi.org/10.30954/2277-940X.10.2018.17, 2018. 
                    
 
                 
                
                    
                        
                        Bila, L., Malatji, P. D., and Tyasi, T.: Predicting body weight of South African Sussex cattle at weaning using multivariate adaptive regression splines and classification and regression tree data mining algorithms, J. Appl. Anim. Res., 51, 608–615, https://doi.org/10.1080/09712119.2023.2258976, 2023. 
                    
 
                 
                
                    
                        
                        Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J.: Classification and Regression Trees, 1st edn., Chapman and Hall/CRC, https://doi.org/10.1201/9781315139470, 1984. 
                    
 
                 
                
                    
                        
                        Çelik, Ş. and Yilmaz, O.: Prediction of Body Weight of Turkish Tazi Dogs using Data Mining Techniques: Classification and Regression Tree (CART) and Multivariate Adaptive Regression Splines (MARS), Pakistan Journal of Zoology, 50, 575–583, https://doi.org/10.17582/journal.pjz/2018.50.2.575.583, 2018. 
                    
 
                 
                
                    
                        
                        Çelik, Ş., Eyduran, E., and Tariq, M.: Comparison of predictive performance of data mining algorithms in predicting body weight in Mengali rams of Pakistan, Revista Brasileira de Zootecnia, 46, 863–872, https://doi.org/10.1590/S1806-92902017001100005, 2017. 
                    
 
                 
                
                    
                        
                        Chimezie, V., Fayeye, T., Ayorinde, K., and Olojede, H.: Relationship between Body Weight and Linear Body Measurements in Japanese Quail (
Coturnix coturnix japonica), J. Sci. Res., 6, 175–183, https://doi.org/10.3329/jsr.v6i1.16368, 2013. 
                    
 
                 
                
                
                    
                        
                        Dzungwe, J., Gwaza, D., and Egahi, J.: Statistical Modeling of Body Weight and Body Linear Measurements of the French Broiler Guinea Fowl in the Humid Tropics of Nigeria, Poultry, Fish. Wildlife Sci., 06, https://doi.org/10.4172/2375-446X.1000197, 2018. 
                    
 
                 
                
                    
                        
                        Eyduran, E., Akin, M., and Eyduran, S.: Application of multivariate adaptive regression splines in agricultural sciences through r software, Nobel Academic, Ankara, Turkey, ISBN 978-6052149812, 2019. 
                    
 
                 
                
                    
                        
                        FAO: Phenotypic characterization of animal genetic resources, FAO, Animal Production and Health Guidelines No. 11, Rome, 
https://www.fao.org/4/i2686e/i2686e00.pdf (last access: 4 June 2024), 2012. 
                    
 
                 
                
                    
                        
                        Faraz, A., Tirink, C., Eyduran, E., Waheed, A., Tauqir, N. A., Nabeel, M. S., and Tariq, M. M.: Prediction of live body weight based on body measurements in Thalli sheep under tropical conditions of Pakistan using CART and MARS, Trop. Anim. Health Pro., 53, 301, https://doi.org/10.1007/s11250-021-02748-6, 2021. 
                    
 
                 
                
                    
                        
                        Faraz, A., Tırınk, C., Önder, H., Sen, U., Ishaq, H., Tauqir, N., Waheed, A., and Nabeel, M.: Usage of the XGBoost and MARS algorithms for predicting body weight in Kajli sheep breed, Trop. Anim. Health Pro., 55, 276, https://doi.org/10.1007/s11250-023-03700-6, 2023. 
                    
 
                 
                
                    
                        
                        Friedman, H. J.: Multivariate Adaptive Regression Splines, Ann. Stat., 19, 1–67, https://doi.org/10.1214/aos/1176347963, 1991. 
                    
 
                 
                
                    
                        
                        Guni, F., Mbaga, S., Katule, A., and Goromela, E.: Performance evaluation of Kuroiler and Sasso chicken breeds reared under farmer management conditions in highland and lowland areas of Mvomero district, Eastern Tanzania, Trop. Anim. Health Pro., 53, 245, https://doi.org/10.1007/s11250-021-02693-4, 2021. 
                    
 
                 
                
                    
                        
                        Habashy, W., Enab, A., and El-Tahawy, W.: Prediction of Body weight and other linear Body Weight Measurements of Leghorn Versus Two Egyptian Strains of Chicken, Journal of Animal and Poultry Production, 12, 287–291, https://doi.org/10.21608/jappmu.2021.88242.1017, 2021. 
                    
 
                 
                
                    
                        
                        Hlokoe, V., Mokoena, K., and Tyasi, T.: Using multivariate adaptive regression splines and classification and regression tree data mining algorithms to predict body weight of Nguni cows, J. Appl. Anim. Res., 50, 534–539, https://doi.org/10.1080/09712119.2022.2110498, 2022. 
                    
 
                 
                
                    
                        
                        IBM SPSS: SPSS Release 26.0 Statistical Packet Program, SPSS for Windows, SPSS Inc., Chicago, IL, USA, 
https://www.ibm.com/support/pages/release-notes-ibm%C2%AE-spss%C2%AE-statistics-260 (last access: 9 March 2024), 2019. 
                    
 
                 
                
                    
                        
                        Isaac, U. and Adeolu, A.: Linear Models for Predicting Body Weight of Crossbred Chickens, International Journal of Research and Innovation in Applied Science, VIII, https://doi.org/10.51584/IJRIAS.2023.8407, 2023. 
                    
 
                 
                
                    
                        
                        Jerome, H. F.: Multivariate Adaptive Regression Splines, Ann. Stat., 19, 1–67, https://doi.org/10.1214/aos/1176347963, 1991. 
                    
 
                 
                
                    
                        
                        Kalai, K., Behera, D., Upadhyaya, T., and Pathak, D.: Pathomorphology of gonads in experimental chronic glyphosate toxicity in kuroiler chickens, Indian Journal of Veterinary Pathology, 4, 322–326, https://doi.org/10.5958/0973-970X.2022.00054.2, 2023. 
                    
 
                 
                
                
                    
                        
                        Liswaniso, S., Qin, N., and Xu, R.: Quantitative analysis of egg quality traits of indigenous free-range chickens in kabwe, zambia, J. Entomol. Zool. Stud, 8, 603–608, 2020. 
                    
 
                 
                
                    
                        
                        Liswaniso, S., Qin, N., Tyasi, T., and Chimbaka, I.: Use of data mining algorithms chaid and cart in predicting egg weight from egg quality traits of indigenous free-range chickens in zambia, Adv. Anim. Vet. Sci., 9, 215–220, https://doi.org/10.17582/journal.aavs/2021/9.2.215.220, 2021. 
                    
 
                 
                
                    
                        
                        Liswaniso, S., Qin, N., Shan, X., Sun, X., and Xu, R.: Phenotypic characterization of indigenous free range chickens in Kalomo, Zambia, J. Anim. Plant Sci., 33, 2023, https://doi.org/10.36899/JAPS.2023.3.0658, 2023. 
                    
 
                 
                
                    
                        
                        Mallam, I., Ibrahim Hussaini, Y., Alhassan, I. D., Negedu, E. A., Kehinde, W. H., and Gugong, V.: Prediction of body weight of Nigerian non-descript goats from morphometric traits using classification and regression tree model, FUDMA Journal of Agriculture and Agricultural Technology, 9, 109–116, https://doi.org/10.33003/jaat.2023.0902.14, 2023. 
                    
 
                 
                
                    
                        
                        Matawork, M. J. I. J. O. L. P.: Productive and reproductive performance of indigenous chickens in Ethiopia, International journal of livestock production, 9, 253–259, 2018. 
                    
 
                 
                
                    
                        
                        Mathapo, M., Mugwabana, T., and Tyasi, T.: Prediction of body weight from morphological traits of South African non-descript indigenous goats of Lepelle-Nkumbi Local Municipality using different data mining algorithm, Trop. Anim. Health Prod., 54, 1–9, https://doi.org/10.1007/s11250-022-03096-9, 2022. 
                    
 
                 
                
                    
                        
                        Mendeş, M. and Akkartal, E.: Regression tree analysis for predicting slaughter weight in broilers, Ital. J. Anim. Sci., 8, 615–624, https://doi.org/10.4081/ijas.2009.615, 2009. 
                    
 
                 
                
                    
                        
                        Moto, E. and Rubanza, C.: Growth performance, egg production and exterior egg quality characteristics of Kuroiler chickens in selected sites of Babati district of northern Tanzania, Research Square, https://doi.org/10.21203/rs.3.rs-2104563/v1, 2022. 
                    
 
                 
                
                
                    
                        
                        Norris, D., Brown, D., Moela, A., Selolo, T., Mabelebele, M., Ng'ambi, J., and Tyasi, T.: Path coefficient and path analysis of body weight and biometric traits in indigenous goats, Indian J. Anim. Res., 49, 573–578, https://doi.org/10.18805/ijar.5564, 2015. 
                    
 
                 
                
                    
                        
                        Obike, O., Obasi, E., Obi, O. C., Nosike, R., Isaac, U., Adawo, E. M., and Oke, U.: Estimation of body weight from morphometric traits in three chicken strains using linear and quadratic models, International Journal of Agriculture and Rural Development, 22, 4012–4018, 2019. 
                    
 
                 
                
                    
                        
                        Oyebanjo, M., Coker, O., and Osaiyuwu, O.: Predicting the body weight of indigenous goat breeds from morphological measurements using the classification and regression tree (CART) data mining algorithm, Biotechnology in Animal Husbandry, 39, 33–49, https://doi.org/10.2298/BAH2301033O, 2023. 
                    
 
                 
                
                    
                        
                        Rashijane, L., Mokoena, K., and Tyasi, T.: Using Multivariate Adaptive Regression Splines to Estimate the Body Weight of Savanna Goats, Animals, 13, 1–11, https://doi.org/10.3390/ani13071146, 2023. 
                    
 
                 
                
                    
                        
                        Sanka, Y., Mbaga, S., and Mutayoba, S.: Evaluation of egg production and egg quality of Sasso and Kuroiler chickens fed three diets at varying levels of supplementation under a semi-intensive system of production in Tanzania, Animal Production Science, 61, https://doi.org/10.1071/AN20453, 2021a. 
                    
 
                 
                
                    
                        
                        Sanka, Y., Mbaga, S., Mutayoba, S., and Mushi, D.: Performance of Sasso and Kuroiler Chickens under Semi-Scavenging System in Tanzania: Carcass and Meat Quality, Asian Journal of Poultry Science, 15, 1–12, https://doi.org/10.3923/ajpsaj.2021.1.12, 2021b.  
                    
 
                 
                
                    
                        
                        Sebho, H.: Exotic Chicken Status, Production Performance and Constraints in Ethiopia: A Review, Asian Journal of Poultry Science, 10, 30–39, https://doi.org/10.3923/ajpsaj.2016.30.39, 2016. 
                    
 
                 
                
                    
                        
                        Semakula, J., Lusembo, P., Kugonza, D. R., Mutetikka, D., Ssennyonjo, J., and Mwesigwa, M.: Estimation of live body weight using zoometrical measurements for improved marketing of indigenous chicken in the Lake Victoria basin of Uganda, Livestock Research for Rural Development, 23, 70, 
http://www.lrrd.org/lrrd23/8/sema23170.htm (last access: 24 August, 2025), 2011. 
                    
 
                 
                
                    
                        
                        Sharma, J., Xie, J., Boggess, M., Galukande, E., Semambo, D., and Sharma, S.: Higher weight gain by Kuroiler chickens than indigenous chickens raised under scavenging conditions by rural households in Uganda, Livestock Research for Rural Development, 27, 178, 
http://www.lrrd.org/lrrd27/9/shar27178.html (last access: 9th March, 2024), 2015. 
                    
 
                 
                
                    
                        
                        Temoso, O., Coleman, M., Baker, D., Morley, P., Baleseng, L., Makgekgenene, A., and Bahta, S.: Using path analysis to predict bodyweight from body measurements of goats and sheep of communal rangelands in Botswana, S. Afr. J. Anim. Sci., 47, 854–863, https://doi.org/10.4314/sajas.v47i6.13, 2017. 
                    
 
                 
                
                    
                        
                        Tyasi, T., Kgotlelelo, M., Mokoena, K., Rashijane, L., Bopape, P., Mathapo, M., Divine, N., Maluleke, D., Danguru, L., and Kagisho, M.: Multivariate Adaptive Regression Splines Data Mining Algorithm for Prediction of Body Weight of Hy-Line Silver Brown Commercial Layer Chicken Breed, Advances in Animal and Veterinary Sciences, 8, 794–799, https://doi.org/10.17582/journal.aavs/2020/8.8.794.799, 2020a. 
                    
 
                 
                
                    
                        
                        Tyasi, T., Kgotlelelo, M., Mokoena, K., Rashijane, L., Mathapo, M., Danguru, L., Kagisho, M., Bopape, P., Divine, N., Maluleke, D., Gunya, B., and Gxasheka, M.: Classification and Regression Tree (CRT) Analysis to Predict Body Weight of Potchefstroom Koekoek Laying Hens, Advances in Animal and Veterinary Sciences, 8, 354–359, https://doi.org/10.17582/journal.aavs/2020/8.4.354.359, 2020b. 
                    
 
                 
                
                    
                        
                        Tyasi, T., Eyduran, E., and Çelik, Ş.: Comparison of Tree-based Regression Tree Methods for Predicting Live Body Weight from Morphological Traits in Hy-line Silver Brown Commercial Layer and Indigenous Potchefstroom Koekoek breeds raised in South Africa, Trop. Anim. Health Pro., 53, 1–8, https://doi.org/10.1007/s11250-020-02443-y, 2021. 
                    
 
                 
                
                    
                        
                        Urooj, M., Iqbal, F., and Huma, Z.: An ensemble machine learning approach for the prediction of body weight of chickens from body measurement, J. Anim. Plant. Sci., 35, https://doi.org/10.36899/JAPS.2023.4.0673, 2023. 
                    
 
                 
                
                    
                        
                        Yakubu, A. and Ari, M.: Principal component and discriminant analyses of body weight and conformation traits of Sasso, Kuroiler and indigenous fulani chickens in Nigeria, J. Anim. Plant Sci., 28, 46–55, 2017.