Articles | Volume 65, issue 3
Arch. Anim. Breed., 65, 301–308, 2022
https://doi.org/10.5194/aab-65-301-2022
Arch. Anim. Breed., 65, 301–308, 2022
https://doi.org/10.5194/aab-65-301-2022
Original study
10 Aug 2022
Original study | 10 Aug 2022

Assessment of the association of the MOGAT1 and MOGAT3 gene with growth traits in different growth stages in Holstein calves

Gökhan Gökçe and Mervan Bayraktar

Related subject area

Subject: DNA markers and gene expressions | Animal: Cattle
Genetic polymorphism of Pit-1 and CSN3 genes in Holstein calves and its associations with calf birth weight
Ismail Fındık and Memis Özdemir
Arch. Anim. Breed., 65, 285–292, https://doi.org/10.5194/aab-65-285-2022,https://doi.org/10.5194/aab-65-285-2022, 2022
Short summary
The relationships between κ-casein (CSN3) gene polymorphism and some performance traits in Simmental cattle
Hamiye Ünal and Sinan Kopuzlu
Arch. Anim. Breed., 65, 129–134, https://doi.org/10.5194/aab-65-129-2022,https://doi.org/10.5194/aab-65-129-2022, 2022
Short summary
Allele-specific polymerase chain reaction for the discrimination of elite Korean cattle associated with high beef quality and quantity
Wonhee Lee, Insik Nam, Daehyun Kim, Kukdong Kim, and Yoonseok Lee
Arch. Anim. Breed., 65, 47–53, https://doi.org/10.5194/aab-65-47-2022,https://doi.org/10.5194/aab-65-47-2022, 2022
Short summary
Determination of the association of GHR/AluI gene polymorphisms with milk yield traits in Holstein and Jersey cattle raised in Turkey
Ozden Cobanoglu, Ertugrul Kul, Eser K. Gurcan, Samet H. Abaci, and Soner Cankaya
Arch. Anim. Breed., 64, 417–424, https://doi.org/10.5194/aab-64-417-2021,https://doi.org/10.5194/aab-64-417-2021, 2021
Short summary
Regulating glycolysis and heat shock proteins in Gannan yaks (Bos grunniens) in response to hypoxia of the Qinghai–Tibet Plateau
Yuliang Wen, Jiqing Wang, Xiu Liu, Shaobin Li, Jiang Hu, and Yuzhu Luo
Arch. Anim. Breed., 64, 345–353, https://doi.org/10.5194/aab-64-345-2021,https://doi.org/10.5194/aab-64-345-2021, 2021
Short summary

Cited articles

Agarwal, A. K., Tunison, K., Dalal, J. S., Yen, C.-L. E., Robert Jr, V., Horton, J. D., and Garg, A.: Mogat1 deletion does not ameliorate hepatic steatosis in lipodystrophic (Agpat2-/-) or obese (ob/ob) mice, J. Lipid Res., 57, 616–630, https://doi.org/10.1194/jlr.M065896, 2016. 
Bayraktar, M. and Shoshin, O.: Estimation of the associations between GH and DGAT1 genes and growth traits by using decision tree in Awassi sheep, Anim. Biotechnol., 33, 167–173, https://doi.org/10.1080/10495398.2021.1975727, 2022a. 
Bayraktar, M. and Shoshin, O.: Estimate of the Association of IGF-I and IGFALS Genes with Growth Traits in Hamdani Sheep, Braz. Arch. Biol. Techn., 64, e21210262, https://doi.org/10.1590/1678-4324-2021210262, 2022b. 
Bayraktar, M. and Shoshin, O.: Association between CAST and MSTN gene polymorphisms with growth traits in Awassi sheep, Kuwait J. Sci., 49, https://doi.org/10.48129/kjs.10955, 2022c. 
Borges, B. O., Curi, R. A., Baldi, F., Feitosa, F. L. B., de Andrade, W. B. F., de Albuquerque, L. G., de Oliveira, H. N., and Chardulo, L. A. L.: Polymorphisms in candidate genes and their association with carcass traits and meat quality in Nellore cattle, Pesqui. Agropecu. Bras., 49, 364–371, https://doi.org/10.1590/S0100-204X2014000500006, 2014. 
Download
Short summary
The study was conducted on Holstein calves to find the association between MOGAT1, MOGAT3/g.A229G, and MOGAT3/g.G1627A and growth traits. Association analysis showed a statistically significant difference between the MOGAT1 and body weight, body length, and chest circumference, MOGAT3/g.A229G with ADG and withers height, and MOGAT3/g.G1627A with body weight and body length (p < 0.05). The results confirmed that the MOGAT1, MOGAT3/g.A229G, and MOGAT3/g.G1627A locus are strong candidate genes.