Articles | Volume 65, issue 2
https://doi.org/10.5194/aab-65-145-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-65-145-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Association analysis of single-nucleotide polymorphism in prolactin and its receptor with productive and body conformation traits in Liaoning cashmere goats
Yanzhi Wu
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Yu Zhang
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Yuting Qin
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Weidong Cai
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Xinjiang Zhang
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Yanan Xu
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Xingtang Dou
Liaoning Province Modern Agricultural Production Base Construction
Engineering Center, Liaoyang 110000, China
Zhanhong Wang
Liaoning Province Modern Agricultural Production Base Construction
Engineering Center, Liaoyang 110000, China
Di Han
Liaoning Province Modern Agricultural Production Base Construction
Engineering Center, Liaoyang 110000, China
Jiaming Wang
Liaoning Province Modern Agricultural Production Base Construction
Engineering Center, Liaoyang 110000, China
Guangyu Lin
Liaoning Province Modern Agricultural Production Base Construction
Engineering Center, Liaoyang 110000, China
Lingling Wang
Liaoning Province Modern Agricultural Production Base Construction
Engineering Center, Liaoyang 110000, China
Jianjun Hao
Administration Bureau of Zhungeer Banner, Ordos City, Inner Mongolia
010399, China
Shuqing Fu
Lantian Sub-district Office, Zhungeer Banner, Ordos City, Inner Mongolia
010399, China
Rui Chen
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Yinggang Sun
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Zhixian Bai
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Ming Gu
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Zeying Wang
CORRESPONDING AUTHOR
College of Animal Science & Veterinary Medicine, Shenyang Agricultural
University, Shenyang 110866, China
Related authors
No articles found.
Hua Ma, Weihang Hong, Lingjun Nie, Shuaitong Li, Qingyu Yuan, Ran Duan, Qiying Zhan, Lingchao Kong, and Zeying Wang
Arch. Anim. Breed., 68, 135–149, https://doi.org/10.5194/aab-68-135-2025, https://doi.org/10.5194/aab-68-135-2025, 2025
Short summary
Short summary
This study investigated single-nucleotide polymorphism (SNP) in the keratin 27 (KRT27, 1919G/A) and elongation of very-long-chain fatty acids 4 (ELOVL4, 28666C/T) genes, which are associated with production traits in Liaoning cashmere goats. Multivariate analysis was also conducted. The GGCC genotype combination was associated with finer cashmere quality. The GGTT haplotype exhibited a multigenic effect. The TT genotype demonstrated pleiotropy.
Lingchao Kong, Shuaitong Li, Yuan Pan, Jiaqi Li, Siyi Li, Yining Liu, Sibing Hou, Qingkun Liu, Yanjun Qiao, Yinggang Sun, and Zeying Wang
Arch. Anim. Breed., 67, 81–95, https://doi.org/10.5194/aab-67-81-2024, https://doi.org/10.5194/aab-67-81-2024, 2024
Short summary
Short summary
In this study, we investigated the effect of the sheep FecB gene on reproductive and productive performance by molecular biology techniques. Our results showed that the most dominant genotypes associated with lambing performance were AA and CT, with the dominant haplotype combination being AACT. In terms of body performance, the dominant genotypes were AA and CC, with the dominant haplotype combination being AACC.
Junyin Zhao, Jincheng Shen, Zeying Wang, Man Bai, Yixing Fan, Yubo Zhu, and Wenlin Bai
Arch. Anim. Breed., 65, 55–67, https://doi.org/10.5194/aab-65-55-2022, https://doi.org/10.5194/aab-65-55-2022, 2022
Short summary
Short summary
Cashmere is a natural fiber from cashmere goats. The textile has been favored by consumers due to typical features like lightness, softness, and comfort. In this study, we show that circRNA-0100 promotes the differentiation of secondary hair follicle stem cells into hair lineage via sequestering miR-153-3p to heighten the KLF5 expression. Our results provide significant information for artificially regulating the secondary hair follicle regeneration and cashmere growth in cashmere goats.
Related subject area
Subject: Product quality | Animal: Goats
Influence of breed on selected quality parameters of fresh goat meat
Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats
Snežana Ivanović, Marija Pavlović, Ivan Pavlović, Aleksandra Tasić, Jelena Janjić, and Milan Ž. Baltić
Arch. Anim. Breed., 63, 219–229, https://doi.org/10.5194/aab-63-219-2020, https://doi.org/10.5194/aab-63-219-2020, 2020
Hourad Ghoreishi, Sadegh Fathi-Yosefabad, Jalal Shayegh, and Abolfazl Barzegari
Arch. Anim. Breed., 62, 565–570, https://doi.org/10.5194/aab-62-565-2019, https://doi.org/10.5194/aab-62-565-2019, 2019
Short summary
Short summary
Goat breeds in Iran are various. People use goat products for food in addition to clothing. Among goat breeds, the Markhoz (Iranian Angora) is one of the most notable in the northwest of Iran (mainly the Kurdistan region) with valuable mohair. The purpose of this study was to search for a way to genetically improve reproduction as well as fertility to increase their population. Based on the results of this research, a high-fecundity doe can be screened; hence flock parturition will improve.
Cited articles
Bolefeysot, C., Goffin, V., Edery, M., Binart, N., and Kelly, P. A.:
Prolactin (PRL) and Its Receptor: Actions, Signal Transduction Pathways and
Phenotypes Observed in PRL Receptor Knockout Mice, Endocr. Rev., 19, 225–68,
https://doi.org/10.1210/edrv.19.3.0334, 1998.
Capparelli, R., Parlato, M., Amoroso, M. G., Roperto, S., Marabelli, R.,
Roperto, F., and Iannelli, D.: Mannose-binding lectin haplotypes influence
Brucella abortus infection in the water buffalo (Bubalus bubalis),
Immunogenetics, 60, 157–165, https://doi.org/10.1007/s00251-008-0284-4, 2008.
Chang, Y., Bai, W. L., Zheng, Y. Y., Hui, T. Y., Sun, J. M., Guo, D., Guo,
S. L., and Wang, Z. Y.: Correlation analysis of candidate gene SNP for
high-yield in Liaoning cashmere goats with litter size and cashmere
performance, Anim. Biotechnol., 32, 43–50,
https://doi.org/10.1080/10495398.2019.1652188, 2019.
Craven, A. J., Ormandy, C. J., Robertson, F. G., Wilkins, R. J., Kelly, P.
A., Nixon, A. J., and Pearson, A. J.: Prolactin signaling influences the
timing mechanism of the hair follicle: analysis of hair growth cycles in
prolactin receptor knockout mice, Endocrinology, 142, 2533–2539,
https://doi.org/10.1210/endo.142.6.8179, 2001.
Dahl, G. E.: Effects of short day photoperiod on prolactin signaling in dry
cows: a common mechanism among tissues and environments?, J. Anim Sci., 86,
10–14, https://doi.org/10.2527/jas.2007-0311, 2008.
Ding, Z. L.: Research progress of prolactin, International Journal of
Genetics (China), 32, 23–26, 2009.
Fallin, D., Cohen, A., Essioux, L., Chumakov, I., Blumenfeld, M., Cohen, D.,
and Schork, N. J.: Genetic analysis of case/control data using estimated
haplotype frequencies: application to APOE locus variation and Alzheimer's
disease, Genome Res., 11, 143–151, https://doi.org/10.1101/gr.148401, 2001.
Fernandes R. D. P. P., Freire, M. T. D. A., Paula. E. S. M. D., Kanashiro, A. L. S. K., Catunda, F. A. P., Rosa, A. F., Balieiro, J. C. D. C., and Trindade, M. A.: Stability
of lamb loin stored under refrigeration and packed in different modified
atmosphere packaging systems, Meat Sci., 96, 554–561,
https://doi.org/10.1016/j.meatsci.2013.08.005, 2014.
Foitzik, K., Krause, K., Nixon, A. J., Ford, C. A., Ohnemus, U., Pearson, A.
J., and Paus, R.: Prolactin and its receptor are expressed in murine hair
follicle epithelium, show hair cycle-dependent expression, and induce
catagen, Am. J. Pathol., 162, 1611–1621,
https://doi.org/10.1016/s0002-9440(10)64295-2, 2003.
Freeman, M. E., Kanyicska, B., Lerant, A., and Nagy, G.: Prolactin:
structure, function, and regulation of secretion, Physiol. Rev., 80,
1523–1631, https://doi.org/10.1152/physrev.2000.80.4.1523, 2000.
Giustina, A., Mazziotti, G., and Canalis, E.: Growth hormone, insulin-like
growth factors, and the skeleton, Endocr. Rev., 29, 535–559,
https://doi.org/10.1210/er.2007-0036, 2008.
Guo, H. Y., Jin, Y., Li, Y. J., Chen, G. H., and Zhang, H.: The relationship
between PRLR gene polymorphism and lambing performance of Hu sheep, Journal
of Yangzhou University (Agriculture and Life Sciences Edition) (China), 38,
57–61, https://doi.org/10.16872/j.cnki.1671-4652.2017.01.012, 2017.
Hallerman, E. M., Theilmann, J. L., Beckmann, J. S., Soller, M., and Womack,
J. E.: Mapping of bovine prolactin and rhodopsin genes in hybrid somatic
cells., Anim. Genet, 19, 123–131,
https://doi.org/10.1111/j.1365-2052.1988.tb00798.x, 1988.
Haxholm, G. W., Nikolajsen, L. F., Olsen, J. G., Fredsted, J., Larsen, F.
H., Goffin, V., Pedersen, S. F., Brooks, A. J., Waters, M. J., and
Kragelund, B. B.: Intrinsically disordered cytoplasmic domains of two
cytokine receptors mediate conserved interactions with membranes, Biochem. J.,
468, 495–506, https://doi.org/10.1042/bj20141243, 2015.
Lan, X. Y., Chen, H., Tian, Z. Q., Liu, S. Q., and Fang, X. T. J. H.:
Correlations between SNP of LALBA gene and economic traits in Inner
Mongolian white cashmere goat, Hereditas (Bjing), 30, 169–174,
https://doi.org/10.3724/sp.j.1005.2008.00169, 2008.
Lan, X. Y., Pan, C. P., Chen, H., Lei, C. Z., Li, F. Y., Zhang, H. Y., and
Ni, Y. S.: Novel SNP of the goat prolactin gene (PRL) associated with
cashmere traits, J. Appl. Genet., 50, 51–54,
https://doi.org/10.1007/BF03195652, 2009.
Langan, E. A., Foitzik-Lau, K., Goffin, V., Ramot, Y., and Paus, R.:
Prolactin: an emerging force along the cutaneous-endocrine axis, Trends
Endocrinol. Metab., 21, 569–577, https://doi.org/10.1016/j.tem.2010.06.001,
2010.
Leyva-Corona, J. C., Reyna-Granados, J. R., Zamorano-Algandar, R., Sanchez-Castro, M. A., Thomas, M. G., Enns, R. M., Speidel, S. E., Medrano, J. F., Rincon, G., and Luna-Nevarez, P.: Polymorphisms within the prolactin and growth hormone/insulin-like growth factor-1 functional pathways associated with fertility traits in Holstein cows raised in a hot-humid climate, Trop. Anim. Health Prod., 50, 1913–1920, https://doi.org/10.1007/s11250-018-1645-0, 2018.
Li, J., Liang, A., Li, Z., Chao, D., Hua, G., Salzano, A., Campanile, G.,
Gasparrini, B., and Yang, L. G.: An association analysis between PRL
genotype and milk production traits in Italian Mediterranean river buffalo,
J. Dairy Res., 84, 430–433, https://doi.org/10.1017/S0022029917000693, 2017.
Littlejohn, M. D., Henty, K. M., Tiplady, K., Johnson, T., Harland, C.,
Lopdell, T., Sherlock, R. G., Li, W., Lukefahr, S. D., Shanks, B. C.,
Garrick, D. J., Snell, R. G., Spelman, R. J., and Davis, S. R.: Functionally
reciprocal mutations of the prolactin signalling pathway define hairy and
slick cattle, Nat. Commun., 5, 5861, https://doi.org/10.1038/ncomms6861, 2014.
Liu, X., Ma, L., Wang, M., Wang, K., Li, J., Yan, H., Zhu, H., and Lan, X.:
Two indel variants of prolactin receptor (PRLR) gene are associated with
growth traits in goat, Anim. Biotechnol., 31, 314–323,
https://doi.org/10.1080/10495398.2019.1594863, 2020.
Lü, A., Hu, X., Chen, H., Jiang, J., Zhang, C., Xu, H., and Gao, X.:
Single nucleotide polymorphisms in bovine PRL gene and their associations
with milk production traits in Chinese Holsteins, Mol. Biol. Rep., 37, 547–551,
https://doi.org/10.1007/s11033-009-9762-5, 2010.
Lü, A., Hu, X., Chen, H., Dong, Y., and Pang, Y.: Single nucleotide
polymorphisms of the prolactin receptor (PRLR) gene and its association with
growth traits in chinese cattle, Mol. Biol. Rep., 38, 261–266,
https://doi.org/10.1007/s11033-010-0103-5, 2011.
Maathuis, A., Havenaar, R., He, T., and Bellmann, S.: Protein Digestion and
Quality of Goat and Cow Milk Infant Formula and Human Milk Under Simulated
Infant Conditions, J. Pediatr. Gastr. Nutr., 65, 661–666,
https://doi.org/10.1097/mpg.0000000000001740, 2017.
Paré, P., Reales, G., Paixão-Côrtes, V. R., Vargas-Pinilla, P.,
Viscardi, L. H., Fam, B., Pissinatti, A., Santos, F. R., and Bortolini, M.
C.: Molecular evolutionary insights from PRLR in mammals, Gen. Comp.
Endocr., 309, 113791, https://doi.org/10.1016/j.ygcen.2021.113791, 2021.
Park, E., Cho, M., and Ki, C. S.: Correct use of repeated measures analysis
of variance, Korean J. Lab. Med., 29, 1–9,
https://doi.org/10.3343/kjlm.2009.29.1.1, 2009.
Sirja, V., Joanna, S., Sarah, B., Nina, S., Martin, L., Asko, M.-T., Michel,
G., and Johanna, V.: The role of the bovine growth hormone receptor and
prolactin receptor genes in milk, fat and protein production in Finnish
Ayrshire dairy cattle, Genetics, 173, 2151–2164,
https://doi.org/10.1534/genetics.105.046730, 2006.
Stergiadis, S., Nørskov, N. P., Purup, S., Givens, I., and Lee, M. R. F.:
Comparative Nutrient Profiling of Retail Goat and Cow Milk, Nutrients, 11,
2282, https://doi.org/10.3390/nu11102282, 2019.
Turck, D.: Cow's Milk and Goat's Milk, World Rev. Nutr. Diet., 108, 56–62,
https://doi.org/10.1159/000351485, 2013.
Uddin, R. M., Babar, M. E., Nadeem, A., Hussain, T., Ahmad, S., Munir, S.,
Mehboob, R., and Ahmad, F. J.: Genetic analysis of prolactin gene in
Pakistani cattle, Mol. Biol. Rep., 40, 5685–5689,
https://doi.org/10.1007/s11033-013-2670-8, 2013.
Uversky, V. N.: How to Predict Disorder in a Protein of Interest, Methods
Mol. Biol., 1484, 137–158, https://doi.org/10.1007/978-1-4939-6406-2_11, 2017.
Verardo, L. L., Silva, F. F. E., Machado, M. A., Panetto, J. C. D. C, Faza, D. R. D. L. R, Otto, P. I., Regitano, L. C. D. A., Silva, L. O. C. D., Egito, A. A. D., Albuquerque, M. D. S. M., Zanella, R., and Silva, M. V. G. B. D.: Genome-Wide Analyses Reveal the Genetic Architecture and Candidate Genes of Indicine, Taurine, Synthetic Crossbreds, and Locally Adapted Cattle in Brazil, Front. Genet., 12, 702822, https://doi.org/10.3389/fgene.2021.702822, 2021.
Xu, J., Zhang, Y., Berry, P. A., Jiang, J., Lobie, P. E., Langenheim, J. F.,
Chen, W. Y., and Frank, S. J.: Growth hormone signaling in human T47D breast
cancer cells: potential role for a growth hormone receptor-prolactin
receptor complex, Mol. Endocrinol., 25, 597–610,
https://doi.org/10.1210/me.2010-0255, 2011.
Xu, M., Wang, Y., Dai, Z., Zhang, Y., Li, Y., and Wang, J.: Comparison of
growth and nutritional status in infants receiving goat milk-based formula
and cow milk-based formula: a randomized, double-blind study, Food Nutr. Res.,
59, 28613, https://doi.org/10.3402/fnr.v59.28613, 2015.
Zhang, Y.: Livestock Breeding, China Agricultural Press, ISBN 978-7-10906-9-862, 2001.
Zhang, Y., Yuan, J., Gao, Y. S., Kang, B. N., Li, Z. K., Zhao, Y., and Min,
L. J.: Polymorphism of PRLR Gene in Jining Green Goat and Its Association
Analysis with Main Economic Traits, Anhui Agricultural Sciences (China), 48,
94–97, 2020.
Zhou, S. J., Sullivan, T., Gibson, R. A., Lönnerdal, B., Prosser, C. G.,
Lowry, D. J., and Makrides, M.: Nutritional adequacy of goat milk infant
formulas for term infants: a double-blind randomised controlled trial, The
Brit. J. Nutr., 111, 1641–1651,
https://doi.org/10.1017/s0007114513004212, 2014.
Short summary
Our research tried new ideas and measured the milk production performance of cashmere goats and found that the nutritional indicators of milk of Liaoning cashmere goats were excellent, laying a theoretical foundation for the future development of breeding to cashmere goats. At the same time, it also provides theoretical support for producers and can screen individual genotypes based on the experimental results during seed selection, thereby improving production performance to a certain extent.
Our research tried new ideas and measured the milk production performance of cashmere goats and...