Articles | Volume 64, issue 1
https://doi.org/10.5194/aab-64-177-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-64-177-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unintended consequences of selection for increased production on the health and welfare of livestock
Este van Marle-Köster
CORRESPONDING AUTHOR
Faculty of Natural and Agricultural Sciences, Department of Animal Science, University of Pretoria, Pretoria 0028,
South Africa
Carina Visser
Faculty of Natural and Agricultural Sciences, Department of Animal Science, University of Pretoria, Pretoria 0028,
South Africa
Related authors
Robyn C. Joubert, Bernice E. Mostert, Andries Masenge, and Esté van Marle-Köster
Arch. Anim. Breed., 69, 1–10, https://doi.org/10.5194/aab-69-1-2026, https://doi.org/10.5194/aab-69-1-2026, 2026
Short summary
Short summary
Lameness is a significant cow welfare issue, and it is directly linked to claw health. Large variation in the recording, identification, and management of claw lesions adds to the complexity of finding sustainable solutions. Phenotypic correlations and heritability estimates found in this study indicate that claw lesion data have the potential to be used for genetic evaluation of hoof health; therefore, simplification and standardisation of data collection should be encouraged.
Robyn C. Joubert, Bernice E. Mostert, Andries Masenge, and Esté van Marle-Köster
Arch. Anim. Breed., 69, 1–10, https://doi.org/10.5194/aab-69-1-2026, https://doi.org/10.5194/aab-69-1-2026, 2026
Short summary
Short summary
Lameness is a significant cow welfare issue, and it is directly linked to claw health. Large variation in the recording, identification, and management of claw lesions adds to the complexity of finding sustainable solutions. Phenotypic correlations and heritability estimates found in this study indicate that claw lesion data have the potential to be used for genetic evaluation of hoof health; therefore, simplification and standardisation of data collection should be encouraged.
Cited articles
Andersson, L.: Molecular consequences of animal breeding, Curr. Opin. Genet.
Dev., 23, 295–301, 2013.
Arthur, P.: Double muscling in cattle: a review, Aust. J. Agr. Res.,
46, 1493–1515, 2004.
Bayvel, A. C. and Cross, N.: Animal welfare: A complex domestic and
International public-policy issue – Who are the key players?, Animal Welfare
in Education and Research, 37, 3–12, 2010.
Berry, D. P. and Evans, R. D.: Genetics of reproductive performance in
seasonal calving beef cows and its association with performance traits, J.
Anim. Sci., 92, 1412–1422, 2014.
Berry, D. P., Buckley, F., Dillon, P., Evans, R. D., Rath, M., and Veerkamp,
R. F.: Genetic relationships among body condition score, body weight, milk
yield, and fertility in dairy cows, J. Dairy Sci., 86, 2193–2204, 2003.
Berry, D. P., Wall, E., and Pryce, J. E.: Genetics and genomics of reproductive
performance in dairy and beef cattle, Animal, 8, 105–121, 2014.
Brambilla, G., Civitareale, C., Ballerini, A., Fiori, M., Amadori, M.,
Archetti, L. I., Regini, M., and Betti, M.: Response to oxidative stress as a
welfare parameter in swine, Redox Rep., 7, 159–163, 2002.
Buller, H., Blokhuis, H., Jensen, P., and Keeling, L.: Review Towards Farm Animal
Welfare and Sustainability, Animals, 8, 81, https://doi.org/10.3390/ani8060081, 2018.
Cammack, K. M., Thomas, M. G., and Enns, R. M.: Reproductive traits and their
heritabilities in beef cattle, Prof. Anim. Sci., 25, 517–528, 2009.
Carpenter, E. F.: Animals and ethics, Watkins Publishing, London, England, 1980.
Ciepłoch, A., Rutkowska, K., Oprządek, J., and Poławska, E.: Genetic
disorders in beef cattle: a review, Genes Genomics, 39, 461–471, 2017.
Coffey, M.: Dairy cows: in the age of the genotype, phenotype is king, Anim.
Frontiers, 10, 19–22, 2020.
Cole, J. B.: A simple strategy for manageing many recessive disorders in a
dairy cattle breeding program, Gen. Sel. Evol., 47, 94,
https://doi.org/10.1186/s12711-015-0174-9, 2015.
Derks, M. F. L., Gjuvsland, A. B., Bosse, M., Lopes, M. S., van Son, M.,
Harlizius, B., Tan, B. F., Hamland, H., Grindflek, E., Groenen, M. A. M., and
Megens, H. J.: Loss of function mutations in essential genes cause embryonic
lethality in pigs, PLoS Genet., 15, e1008055, https://doi.org/10.1371/journal.pgen.1008055, 2019.
Diamond, J.: Evolution, consequences and future of plant and animal
domestication, Nature, 418, 700, https://doi.org/10.1038/nature01019, 2002.
Dillon, P., Berry, D. P., Evans, R. D., Buckley, F., and Horan, B.:
Consequences of genetic selection for increased milk production in European
seasonal pasture based systems of milk production, Livest. Sci., 99,
141–158, 2006.
Driscoll, C. A., Macdonald, D. W., and O'Brien, S. J.: From wild animals to
domestic pets, an evolutionary view of domestication, P. Natl. Acad. Sci. USA, 106 (Supplement
1), 9971–9978, 2009.
Fiems, L. O.: Double muscling in cattle: Genes, husbandry, carcasses and
meat, Animals, 2, 472–506, 2012.
Fiems, L. O. and Ampe, B.: Importance of dam BW change and calf birth weight
in double-muscled Belgian Blue cattle and its relationship with parity and
calving interval, Animal, 9, 94–103, 2014.
Fitzgerald, R. F., Stalder, K. J., Karriker, L. A., Sadler, L. J., Hill, H. T.,
Kaisand, J., and Johnson, A. K.: The effect of hoof abnormalities on sow
behavior and performance, Livest. Sci., 145, 230–238, 2012.
Garcia-Ruiz, A., Cole, J. B., VanRaden, P. M., Wiggans, G. R., Ruiz-Lopez,
F. J., and Van Tassell, C. P.: Changes in gentic selection differentials and
generation intervals in US Holstein dairy cattle as a result of genomic
selection, P. Natl. Acad. Sci. USA, 113, E3995–E4004, 2016.
Garrick, D. J. and Golden, B. L.: Producing and using genetic evaluations in
the United States beef industry of today, J. Anim. Sci., 87, E11–E18, 2008.
Garritsen, C., Van Marle-Köster, E., Snyman, M. A., and Visser, C.: The
impact of DNA parentage verification on breeding valueestimation and sire
ranking in South African Angora goats, Small Rumin. Res., 124, 30–37, 2015.
Goddard, M. E. and Hayes, B. J.: Mapping genes for complex traits in domestic
animals and their use in breeding programmes, Nat. Rev. Genet., 10,
381–391, 2009.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D.,
Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.: Food
security: the challenge of feeding 9 billion people, Science, 327, 812–818,
2010.
Greger, M.: Transgenesis in animal agriculture: addressing animal health and
welfare concerns, J. Agr. Environ. Ethic., 24, 451–472, 2011.
Hayes, B., Lewin, H. A., and Goddard, M. E.: The future of livestock breeding:
genomic selection for efficiency, reduced emissions intensity and
adaptation, Trends Genet., 9, 206–214, 2013.
Heringstad, B., Egger-Danner, C., Charfeddine, N., Pryce, J. E., Stock, K. F.,
Kofler, J., Sogstad, A. M., Holzhauer, M., Fiedler, A., Müller, K.,
Nielsen, P., Thomas, G., Gengler, N., de Jong, G., Ødegård, C.,
Malchiodi, F., Miglior, F., Alsaaod, M., and Cole, J. B.: Invited review:
Genetics and claw health: Opportunities to enhance claw health by genetic
selection, J. Dairy Sci., 101, 4801–4821, 2018.
Hughes, B. O.: Behaviour as index of welfare, in: Proceedings of the Fifth
European Poultry Conference, Malta, 1005–1018, World's Poultry Science Association, 1976.
Ile, G., Tabaran, A., Dan, S. D., Reget, O., and Mihaiu, M.: Detection of
ryanodine receptor mutation in Mangalitsa crossbred pigs bred in
Transylvania, Porcine Res., 8, 12–16, 2018.
Illumina: BovineHD Genotyping BeadChip, Data Sheet: Agrigenomics, available at: https://www.illumina.com/documents/products/datasheets/datasheet_bovineHD.pdf
(last access: 8 May 2021) 2015a.
Illumina: PorcineSNP60 v2 Genotyping BeadChip, Data Sheet: Agrigenomics, available at: https://emea.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet_porcinesnp60.pdf
(last access: 8 May 2021),
2015b.
Illumina: BovineSNP50 v3 BeadChip, Data Sheet: Agrigenomics, available at: https://www.illumina.com/Documents/products/datasheets/datasheet_bovine_snp5O.pdf
(last access: 8 May 2021), 2020.
Jackson, S. P., Miller, M. F., and Green, R. D.: Phenotypic characterization of
rambouillet sheep expressing the callipyge gene: III. Muscle weights and
muscle weight distribution, J. Anim. Sci., 75, 133–138, 1997.
Koknaroglu, H. and Akunal, T.: Animal welfare: An animal science approach,
Meat Sci., 95, 821–827, 2013.
Korte, S. M., Olivier, B., and Koolhaas, J. M.: A new animal welfare concept
based on allostasis, Physiol. Behav., 92, 422–428, 2007.
Le, H. T., Nilsson, K., Norberg, E., and Lundeheim, N.: Genetic association
between leg conformation in young pigs and sow reproduction, Livest. Sci.,
178, 9–17, 2015.
Lenffer, J., Nicholas, F. W., Castle, K., Rao, A., Gregory, S., Poidinger,
M., Mailman, M. D., and Ranganathan, S.: OMIA (Online Mendelian Inheritance in
Animals): an enhanced platform and integration into the Entrez search
interface at NCBI, Nucleic Acids Res., 34, 599–601, 2006.
Leroy, G.: Inbreeding depression in livestock species: Review and
meta-analysis, Anim. Genet., 45, 618–628, 2014.
Lowder, S. K., Skoet, J., and Raney, T.: The Number, Size, and Distribution of
Farms, Smallholder Farms, and Family Farms Worldwide, World Dev.,
87, 16–29, 2016.
Ma, L., Cole, J. B., Da, Y., and Van Raden, P. M.: Symposium review: Genetics,
genome-wide association study, and genetic improvement of dairy fertility
traits, J. Dairy Sci., 102, 3735–3743, 2018.
Manteca, X., Mainau, E., and Temple, D.: What is Animal Welfare? The farm animal welfare fact sheet, no. 1, June 2012, available at: http://www.fawec.org/ (last access: 10 May 2021), 2012.
Mapiye, C., Chikwanha, O. C., Chimonyo, M., and Dzama, K.: Strategies for
sustainable use of Indigenous cattle genetic resources in Southern Africa,
Diversity, 11, 214, https://doi.org/10.3390/d11110214, 2019.
Martin, P., Barkema, H. W., Brito, L., Narayana, S. G., and Miglior, F.:
Symposium review: Novel strategies to genetically improve mastitis
resistance in dairy cattle, J. Dairy. Sci., 101, 2724–2736, 2018.
Mataveia, G. A., Garrine, C. M. P. L., Pondja, A., Hassen, A., and Visser, C.:
Smallholder goat production in the Namaacha and Moamba districts of southern
Mozambique, J. Agr. Rural Dev. Trop., 119, 31–41, 2018.
Matukumalli, L. K., Lawley, C. T., Schnabel, R. D., Taylor, J. F., Allan, M. F.,
Heaton, M. P., O'Connell, J., Moore, S. S., Smith, T. P., Sonstegard, T. S., and
Van Tassell, C. P.: Development and characterization of a high density SNP
genotyping assay for cattle, PLoS one, 4, 5350–5063, 2009.
McNeel, A. K., Reiter, B. C., Weigel, D., Osterstock, J., and Di Croce, F. A.:
Validation of genomic predictions for welness traits in US Holstein cows, J
Dairy Sci., 100, 9115–9214, 2017.
Meuwissen, T., Hayes, B., and Goddard, M.: Genomic selection: A paradigm
shift in animal breeding, Animal Frontiers, 6, 6–14,
https://doi.org/10.2527/af.2016-0002, 2016.
Miglior, F., Fleming, A., Malchiodi, F., Brito, L. F., Martin, P., and Baes,
C. F.: A 100-year review: Identification and genetic selection of
economically important traits in dairy cattle, J. Dairy. Sci., 100,
10251–10271, 2017.
Nalon, E. and Stevenson, P.: Addressing Lameness in Farmed Animals: An
Urgent Need to Achieve Compliance with EU Animal Welfare Law, Animals, 9,
576, https://doi.org/10.3390/ani9080576, 2019.
Neogen Corporation: GeneSeek® Genomic Profiler Bovine 150k,
Neogen Corperation, available at: https://www.neogen.com/categories/genomic-profiles/ggp-bovine-150k/ (last access: 11 May 2021), 2020a.
Neogen Corporation: GeneSeek® Genomic Profiler Porcine,
Neogen Corporation, available at: https://www.neogen.com/categories/genomic-profiles/ggp-porcine-50k/ (last access: 11 May 2021), 2020b.
Neogen Corporation: Sheep (Ovine) and Goat, Neogen Corporation, available at: https://www.neogen.com/categories/genomic-profiles/ggp-ovine-50k/ (last access: 11 May 2021), 2020c.
OIE: Introduction to the recommendations for animal welfare, in:
Terrestrial Animal Health Code, OIE, available at: https://www.oie.int/app/uploads/2021/03/ar-ang-2012-web.pdf (last access: 17 May 2021), 2012.
Oxford University: Oxford Learner's Pocket Dictionary, New York, 2009.
Pollak, E. J.: Application and impact of new genetic technologies on beef
cattle breeding: a “real world” perspective, Aust. J. Exp. Agr.,
45, 739–748, 2005.
Rauw, W. M., Luiting, P., Beilharz, R. G., Verstegen, M. W. A., and Vangen, O.:
Selection for litter size and its consequences for the allocation of feed
resources: A concept and its implications illustrated by mice selection
experiments, Livest. Prod. Sci., 60, 329–342, 1999.
Ritter, C., Beaver, A., and Van Keyserlingk, M. A. G.: The complex relationship
between welfare and reproduction in cattle, Reprod. Domest. Anim., 54, 29–37,
2019.
Roche, J. F.: The effect of nutritional management of the dairy cow on
reproductive efficiency, Anim. Reprod. Sci., 96, 282–296, 2006.
Sevi, A., Casamassima, D., Pulina, G., and Pazzona, A.: Factors of welfare
reduction in dairy sheep and goats, Ital. J. Anim. Sci., 8 (Sup 1), 81–101,
2009.
Simpson, M. A., Cook, R. W., Solanki, P., Patton, M. A., Dennis, J. A., and
Crosby, A. H.: A mutation in NFκB interacting protein 1 causes
cardiomyopathy and woolly haircoat syndrome of Poll Hereford cattle, Anim.
Genet., 40, 42–46, 2009.
Sinclair, M., Fryer, C., and Phillips, C. J.: The benefits of improving animal
welfare from the perspective of livestock stakeholders across Asia, Animals,
9, 123, https://doi.org/10.3390/ani9040123, 2019.
Small, A. H., Marini, D., le Floch, M., Paull, D., and Lee, C.: A pen study
evaluation of buccal meloxicam and topical anaesthetic at improving welfare
of lambs undergoing surgical mulesing and hot knife tail docking, Res.
Vet. Sci., 118, 270–277, 2018.
Synnov, L. I.: Sheep Genetics, HuVetA, available at:
http://www.huveta.hu/bitstream/handle/10832/1563/Leirdal%2C%20Inger%20Synn%C3%B8v%20sheep%20genetics%204.pdf?sequence=1&isAllowed=y (last access:10 May 2021), 2016.
Telugu, B. P., Park, K. E., and Park, C. H.: Genome editing and genetic
engineering in livestock for advancing agricultural and biomedical
applications, Mamm. Genome, 28, 338–347, 2017.
Teseling, C. F. and Parnell, P.: How Angus breeders have reduced the
frequency of deleterious recessive genetic conditions, Assoc. Adv. Anim.
Breed. Genet., 20, 558–561, 2013.
Van Eenennaam, A. L. and Drake, D. J.: Where in the beef-cattle supply chain
might DNA tests generate value?, Anim. Prod. Sci., 52, 185–196, 2012.
Van Marle-Köster, E., Pretorius, S. J., and Webb, E. C.: Morphological and
physiological characteristics of claw quality in South African Bonsmara
cattle, S. Afr. J. Anim. Sci., 49, 966–976, 2019.
Visscher, P. M., Woolliams, J. S., Smith, D., and Williams, J. L.: Estimation of
pedigree errors in the UK dairy population using microsatellite markers and
the impact on selection, J. Dairy Sci., 85, 2368–2375, 2002.
Visser, C., Van Marle-Köster, E., Myburgh, H. C., and De Freitas, A.:
Phenomics for sustainable production in the South African dairy and beef
cattle industry, Animal Frontiers, 10, 12–18,
https://doi.org/10.1093/af/vfaa003, 2020.
Von Keyserlingk, M. A. G. and Hötzel, M. J.: The ticking clock: Addressing
farm animal welfare in emerging countries, J. Agr. Environ.
Ethic., 28, 179–195, 2015.
Walsh, S. W., Williams, E. J., and Evans, A. C. O.: A review of the causes of
poor fertility in high milk producing dairy cows, Anim. Reprod. Sci.,
123, 127–138, 2011.
Wang, L., Miller, S. P., Retallick, K. J., and Moser, D. W.: Genetic parameter
estimation for foot structure in American Angus cattle, J. Anim. Sci., 95 (Suppl. 4), 100, https://doi.org/10.2527/asasann.2017.203, 2017.
Webb, E. C. and Casey, N. H.: Physiological limits to growth and the related
effects on meat quality, Livest. Sci., 130, 33–40, 2010.
Webster, J.: International standards for farm animal welfare: Science and
values, Vet. J., 198, 3–4, 2013.
Weigel, K. A.: Controlling inbreeding in modern breeding programs, J. Dairy
Sci., 84, E177–E184, 2001.
Wilkens, D. B., Houseman, C., Allan, R., Appleby, M. C., Peeling, D., and
Stevenson, P.: Animal welfare: The role of non-govermental organisations,
Rev. Sci. Tech. Off. Int. Epiz., 24, 625–638, 2005.
Zink, V., Štípková, M., and Lassen, J.: Genetic parameters for
female fertility, locomotion, body condition score, and linear type traits
in Czech Holstein cattle, J. Dairy Sci., 94, 5176–5182, 2011.
Short summary
Selection for increased production in intensive and extensive livestock production systems caused animal health and welfare to deteriorate. This is observed in reduced fertility, lameness and claw health in dairy cattle and pigs, resulting in unnecessary culling. In addition, inbreeding has resulted in a number of genetic defects in cows, sheep and pigs. Accurate recording and an increased awareness of welfare traits are necessary to find sustainable solutions.
Selection for increased production in intensive and extensive livestock production systems...