Articles | Volume 63, issue 2
Arch. Anim. Breed., 63, 409–416, 2020
Arch. Anim. Breed., 63, 409–416, 2020

Original study 16 Nov 2020

Original study | 16 Nov 2020

DNA analysis of the Russian populations of Aberdeen Angus, Hereford and Belgian Blue cattle

Elena N. Konovalova et al.

Related subject area

Subject: DNA markers and gene expressions | Animal: Cattle
Determination of the association of GHR/AluI gene polymorphisms with milk yield traits in Holstein and Jersey cattle raised in Turkey
Ozden Cobanoglu, Ertugrul Kul, Eser K. Gurcan, Samet H. Abaci, and Soner Cankaya
Arch. Anim. Breed., 64, 417–424,,, 2021
Short summary
Regulating glycolysis and heat shock proteins in Gannan yaks (Bos grunniens) in response to hypoxia of the Qinghai–Tibet Plateau
Yuliang Wen, Jiqing Wang, Xiu Liu, Shaobin Li, Jiang Hu, and Yuzhu Luo
Arch. Anim. Breed., 64, 345–353,,, 2021
Short summary
Variation in bovine leptin gene affects milk fatty acid composition in New Zealand Holstein Friesian  ×  Jersey dairy cows
Ishaku Lemu Haruna, Huitong Zhou, and Jon G. H. Hickford
Arch. Anim. Breed., 64, 245–256,,, 2021
Short summary
Detection of genetic variation and activity analysis of the promoter region of the cattle tRNA-modified gene TRDMT1
Xiaohua Yi, Shuai He, Shuhui Wang, Haidong Zhao, Mingli Wu, Shirong Liu, and Xiuzhu Sun
Arch. Anim. Breed., 64, 147–155,,, 2021
Short summary
Regulation of microRNA-33, SREBP and ABCA1 genes in a mouse model of high cholesterol
Xianglun Zhang, Hongbo Zhao, Qingkai Sheng, Xiaomu Liu, Wei You, Haichao Lin, and Guifen Liu
Arch. Anim. Breed., 64, 103–108,,, 2021

Cited articles

Aiello, D., Patel, K., and Lasagna, E.: The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals, Anim Genet., 49, 505–519,, 2018. 
Beever, J. E., Marron, B. M., Parnell, P. F., Teseling, C. F., Steffen, D. J., and Denholm, L. J.: Developmental Duplications (DD): 1. Elucidation of the underlying molecular genetic basis of polymelia phenotypes in Angus cattle, Proc. XXVIII World Buiatrics Congress, Cairns Australia, Abstract 0106, 2014. 
Denholm, L. J., Martin, L. E., Teseling, C. F., Parnell, P. F., and Beever, J. E.: Developmental Duplications (DD): 2. Mutation of the NHLRC2 gene causes neural tube defects in Angus cattle with multiple congenital malformation phenotypes that include axial and limb duplications, heteropagus conjoined twins, midbrain and forebrain malformations including pseudoholoprosencephalon, craniofacial dysmorphogenesis, micropthalmia, diprosopus, embryogenic teratomas, dermoid cysts, myolipomas, split cord malformation and cranial and spinal dysraphism, Proc. XXVIII World Buiatrics Congress, Cairns Australia, Abstract 0100, 2014. 
Dennis, J. A. and Healy, P. J.: Definition of the mutation responsible for maple syrup urine disease in poll shorthorns and genotyping poll shorthorns and poll Herefords for maple syrup urine disease alleles, Res. Vet. Sci, 67, 1–6,, 1999. 
Druet, T., Ahariz, N., Cambisano, N., Tamma, N., Michaux, C., Coppieters, W., Charlier, C., and Georges, M.: Selection in action: dissecting the molecular underpinnings of the increasing muscle mass of Belgian blue cattle, BMC Genom., 15, 796,, 2014. 
Short summary
This F94L MSTN polymorphism study demonstrates the high genetic potential of Aberdeen Angus and Belgian Blue cattle. The Aberdeen Angus populations have animal carriers of the AM, OS, DD and M1 genetic defects points. Animal carriers of HY and MSUD genetic defects were absent in the Hereford herds. These facts allow us to conclude that the breeding of the above breeds has great potential for improving meat cattle industry profitability under genetic defect control.