Articles | Volume 63, issue 2
https://doi.org/10.5194/aab-63-249-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.Molecular characterization, tissue expression and polymorphisms of buffalo PPARGC1A gene
Related authors
Related subject area
Subject: DNA markers and gene expressions | Animal: Ruminants
Polymorphism detection of DGAT1 and Lep genes in Anatolian water buffalo (Bubalus bubalis) populations in Turkey
Comparative analysis of differentially expressed miRNAs related to uterine involution in the ovine ovary and uterus
Identification and validation of key miRNAs and miRNA–mRNA regulatory network associated with uterine involution in postpartum Kazakh sheep
Association of β-casein gene polymorphism with milk composition traits of Egyptian Maghrebi camels (Camelus dromedarius)
Polymorphism and molecular characteristics of the CSN1S2 gene in river and swamp buffalo
Arch. Anim. Breed., 65, 1–9,
2022Arch. Anim. Breed., 64, 167–175,
2021Arch. Anim. Breed., 64, 119–129,
2021Arch. Anim. Breed., 63, 493–500,
2020Arch. Anim. Breed., 63, 345–354,
2020Cited articles
Almagro-Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T.
N., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H.: SignalP 5.0
improves signal peptide predictions using deep neural networks, Nat.
Biotechnol., 37, 420–423, https://doi.org/10.1038/s41587-019-0036-z, 2019.
Bionaz, M. and Loor, J. J.: Gene networks driving bovine milk fat synthesis
during the lactation cycle, BMC Genomics, 9, 366,
https://doi.org/10.1186/1471-2164-9-366, 2008.
Chen, Z., Luo, J., Sun, S., Cao, D., Shi, H., and Loor, J. J.: miR-148a and
miR-17-5p synergistically regulate milk TAG synthesis via PPARGC1A and PPARA
in goat mammary epithelial cells, RNA Biol., 14, 326–338, https://doi.org/10.1080/15476286.2016.1276149, 2017.
D'Ambrosio, C., Arena, S., Salzano, A. M., Renzone, G., Ledda, L., and
Scaloni, A.: A proteomic characterization of water buffalo milk fractions
describing PTM of major species and the identification of minor components
involved in nutrient delivery and defense against pathogens, Proteomics, 8,
3657–3666, https://doi.org/10.1002/pmic.200701148, 2008.
Dominy, J. E., Lee, Y., Gerhart-Hines, Z., and Puigserver, P.:
Nutrient-dependent regulation of PGC-1α's acetylation state and
metabolic function through the enzymatic activities of Sirt1/GCN5, Biochim.
Biophys. Acta, 1804, 1676–1683, https://doi.org/10.1016/j.bbapap.2009.11.023, 2010.