Original study
22 Jul 2020
Original study | 22 Jul 2020
Identification of novel nucleotide sequence variations in an extended region of the bovine leptin gene (LEP) across a variety of cattle breeds from New Zealand and Nigeria
Ishaku L. Haruna et al.
Related authors
Variation in KRTAP6-1 affects wool fibre diameter in New Zealand Romney ewes
Wenhao Li, Hua Gong, Huitong Zhou, Jiqing Wang, Shaobin Li, Xiu Liu, Yuzhu Luo, and Jon G. H. Hickford
Arch. Anim. Breed., 62, 509–515, https://doi.org/10.5194/aab-62-509-2019,https://doi.org/10.5194/aab-62-509-2019, 2019
Related subject area
Determination of genetic variation within the DYRK2 gene and its associations with milk traits in cattle
Cui Mao, Xing Ju, Haijian Cheng, Xixia Huang, Fugui Jiang, Yuni Yao, Xianyong Lan, and Enliang Song
Arch. Anim. Breed., 63, 315–323, https://doi.org/10.5194/aab-63-315-2020,https://doi.org/10.5194/aab-63-315-2020, 2020
Short summary
Analysis of lactating cows on commercial Austrian dairy farms: the influence of genotype and body weight on efficiency parameters
Maria Ledinek, Leonhard Gruber, Franz Steininger, Birgit Fuerst-Waltl, Karl Zottl, Martin Royer, Kurt Krimberger, Martin Mayerhofer, and Christa Egger-Danner
Arch. Anim. Breed., 62, 491–500, https://doi.org/10.5194/aab-62-491-2019,https://doi.org/10.5194/aab-62-491-2019, 2019
Short summary
Linking first lactation survival to milk yield and components and lactation persistency in Tunisian Holstein cows
Marwa Grayaa, Sylvie Vanderick, Boulbaba Rekik, Abderrahman Ben Gara, Christian Hanzen, Siwar Grayaa, Rodrigo Reis Mota, Hedi Hammami, and Nicolas Gengler
Arch. Anim. Breed., 62, 153–160, https://doi.org/10.5194/aab-62-153-2019,https://doi.org/10.5194/aab-62-153-2019, 2019
Short summary
Determination of a possible relationship between a single nucleotide polymorphism (SNP) in the promoter region of the SIRT1 gene and production and reproduction traits in the Agerolese cattle breed
Maria Selvaggi, Claudia Carbonara, Francesca Ciotola, Sara Albarella, Giulio Aiudi, Vincenzo Tufarelli, and Cataldo Dario
Arch. Anim. Breed., 62, 107–112, https://doi.org/10.5194/aab-62-107-2019,https://doi.org/10.5194/aab-62-107-2019, 2019
Short summary
Body weight prediction using body size measurements in Fleckvieh, Holstein, and Brown Swiss dairy cows in lactation and dry periods
Leonhard Gruber, Maria Ledinek, Franz Steininger, Birgit Fuerst-Waltl, Karl Zottl, Martin Royer, Kurt Krimberger, Martin Mayerhofer, and Christa Egger-Danner
Arch. Anim. Breed., 61, 413–424, https://doi.org/10.5194/aab-61-413-2018,https://doi.org/10.5194/aab-61-413-2018, 2018
Short summary
Q method to map the diversity of stakeholder viewpoints along agricultural innovation systems: a case study on cattle genetic improvement in Niger
Seyni Siddo, Nassim Moula, Issa Hamadou, Moumouni Issa, Salissou Issa, Marichatou Hamani, Pascal Leroy, and Nicolas Antoine-Moussiaux
Arch. Anim. Breed., 61, 143–151, https://doi.org/10.5194/aab-61-143-2018,https://doi.org/10.5194/aab-61-143-2018, 2018
Short summary
Individual and combined effects of CAPN1, CAST, LEP and GHR gene polymorphisms on carcass characteristics and meat quality in Holstein bulls
Sena Ardicli, Hale Samli, Deniz Dincel, Bahadir Soyudal, and Faruk Balci
Arch. Anim. Breed., 60, 303–313, https://doi.org/10.5194/aab-60-303-2017,https://doi.org/10.5194/aab-60-303-2017, 2017
Short summary
Effects of polymorphisms at LEP, CAST, CAPN1, GHR, FABP4 and DGAT1 genes on fattening performance and carcass traits in Simmental bulls
Sena Ardicli, Deniz Dincel, Hale Samli, and Faruk Balci
Arch. Anim. Breed., 60, 61–70, https://doi.org/10.5194/aab-60-61-2017,https://doi.org/10.5194/aab-60-61-2017, 2017
Short summary
Genetic relationship of lactation persistency with milk yield, somatic cell score, reproductive traits, and longevity in Slovak Holstein cattle
Eva Strapáková, Juraj Candrák, and Peter Strapák
Arch. Anim. Breed., 59, 329–335, https://doi.org/10.5194/aab-59-329-2016,https://doi.org/10.5194/aab-59-329-2016, 2016
Short summary
AGPAT6 gene EX1_303T > C and EX12_299G > A mutations and associations with economic traits of Chinese Simmental-cross cattle
Xiaojuan Long, Xibi Fang, Ping Jiang, Hang Xiao, Haibin Yu, Mengjiao Zhou, Yunzhi Pan, Chunyan Lu, Zhihui Zhao, and Runjun Yang
Arch. Anim. Breed., 59, 301–307, https://doi.org/10.5194/aab-59-301-2016,https://doi.org/10.5194/aab-59-301-2016, 2016
Short summary
Estimation of variance components of milk, fat, and protein yields of Tunisian Holstein dairy cattle using Bayesian and REML methods
Hafedh Ben Zaabza, Abderrahmen Ben Gara, Hedi Hammami, Mohamed Amine Ferchichi, and Boulbaba Rekik
Arch. Anim. Breed., 59, 243–248, https://doi.org/10.5194/aab-59-243-2016,https://doi.org/10.5194/aab-59-243-2016, 2016
Short summary
Genetic parameters of reproductive traits in Tunisian Holsteins
Hafedh Ben Zaabza, Abderrahmen Ben Gara, Hedi Hammami, Borni Jemmali, Mohamed Amine Ferchichi, and Boulbaba Rekik
Arch. Anim. Breed., 59, 209–213, https://doi.org/10.5194/aab-59-209-2016,https://doi.org/10.5194/aab-59-209-2016, 2016
Short summary
Cited articles
Aznarez, I., Barash, Y., Shai, O., He, D., Zielenski, J., Tsui, L. C.,
Parkinson, J., Frey, B. J., Rommens, J. M., and Blencowe, B. J.: A systematic
analysis of intronic sequences downstream of 5' splice sites reveals a
widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative
splicing regulation, Genom Res. 18, 1247–1258,
https://doi.org/10.1101/gr.073155.107, 2008.
Block, S. S., Butler, W. R., Ehrhardt, R. A., Bell, A. W., van Amburgh, M. E., and
Boisclair, Y. R.: Decreased concentration of plasma leptin in periparturient
dairy cows is caused by negative energy balance, J. Endocrinol., 171,
339–348, https://doi.org/10.1677/joe.0.1710339, 2001.
Buchanan, F. C., Fitzsimmons, C. J., van Kessel, A. G., Thue, T. D.,
Winkelman-Sim, D. C., and Schmutz, S. M.: Association of a missense mutation in
the bovine leptin gene with carcass fat content and leptin mRNA levels,
Genet. Sel. Evol., 34, 105–116, https://doi.org/10.1186/1297-9686-34-1-105,
2002.
Byun, S. O., Fang, Q., Zhou, H., and Hickford, J. G.: An effective method for
silver-staining DNA in large numbers of polyacrylamide gels, Anal. Biochem.,
385, 174–175, https://doi.org/10.1016/j.ab.2008.10.024, 2009.
Chasin, L.: Searching for splicing motifs, Adv. Exp. Med. Biol., 623, 85–106, https://doi.org/10.1007/978-0-387-77374-2_6, 2007.
Dunner, S., Miranda, M. E., Amigues, Y., Canon, J., Georges, M., Hanset, R.,
Williams, J., and Menissier, F.: Haplotype diversity of the myostatin gene among
beef cattle breeds, Genet. Sel. Evol., 35, 103–118,
https://doi.org/10.1186/1297-9686-35-1-103, 2003.
Edwards, C. J., Bollongino, R., Scheu, A., Chamberlain, A., Tresset, A.,
Vigne, J.-D., Baird, J. F. G., Larson, S. Y., Ho, S. Y. W., and Heupink, T. H.:
Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for
domestic cattle and no indication of domestication of European aurochs,
Proc. Biol. Sci., 274, 1377–1385, https://doi.org/10.1098/rspb.2007.0020, 2007.
Elias, C. F., Aschkenasi, C., Lee, C., Kelly, J., Ahima, R. S., Bjorbaek, C.,
Flier, J. S., Saper, C. B., and Elmquist, J. K.: Leptin differentially regulates
NPY and POMC neurons projecting to the lateral hypothalamic area, Neuron, 23,
775–786, https://doi.org/10.1016/S0896-6273(01)80035-0, 1999.
Elmquist, J. K., Elias, C. F., and Saper, C. B.: From lesions to leptin:
hypothalamic control of food intake and body weight, Neuron, 22, 221–232,
https://doi.org/10.1016/s0896-6273(00)81084-3, 1999.
Epstein, H.: The origin of domestic animals of Africa, Africana Publishing
Corporation, New York, USA, available at:
https://hdl.handle.net/10568/70619 (last access: 2 February 2020), 1971.
Gong, H., Zhou, H., and Hickford, J. G.: Diversity of the glycine/tyrosine-rich
keratin-associated protein 6 gene (KAP6) family in sheep, Mol. Biol. Rep.,
38, 31–35, https://doi.org/10.1007/s11033-010-0074-6, 2011.
Haegeman, A., van Zeveren, A., and Peelman, L. J.: New mutation in exon 2 of the
bovine leptin gene, Anim. Genet., 31, 79,
https://doi.org/10.1111/j.1365-2052.2000.579-14.x, 2000.
Hiendleder, S., Lewalski, H., and Janke, A.: Complete mitochondrial genomes of
Bos taurus and
Bos indicus provide new insights into intraspecies variation, taxonomy and
domestication, Cytogenet. Genome Res., 120, 150–156,
https://doi.org/10.1159/000118756, 2008.
Hiller, M., Zhang, Z., Backkofen, R., and Stamm, S.: PremRNA secondary
structures influence exon recognition, PLoS Genet., 3, e204,
https://doi.org/10.1371/journal.pgen.0030204, 2007.
Houseknecht, K. L., Baile, C. A., Matteri, R. L., and Spurlock, M. E.: The biology
of leptin: A review, J. Anim. Sci., 76, 1405–1420,
https://doi.org/10.2527/1998.7651405x, 1998.
Kadokawa, H., Blache, D., Yamada, Y., and Martin, G. B.: Relationships between
changes in plasma concentrations of leptin before and after parturition and
the timing of first postpartum ovulation in high-producing Holstein dairy
cows, Reprod. Fert. Develop., 12, 405–411, https://doi.org/10.1071/RD01001,
2000.
Komisarek, J. and Dorynek, Z.: Polymorphisms of leptin and leptin receptor
genes in the polish population of Holstein-Friesian bulls, Ann. Anim. Sci.,
5, 253–260, 2005.
Konfortov, B. A., Licence, V. E., and Miller, J. R.: Re-sequencing of DNA from a
diverse panel of cattle reveals a high level of polymorphism in both intron
and exon, Mamm. Genome, 10, 1142–1145, https://doi.org/10.1007/s003359901180,
1999.
Lagonigro, R., Wiener, P., Pilla, F., Woolliams, J. A., Williams, J. L.: A new
mutation in the coding region of the bovine leptin gene associated with feed
intake, Anim. Genet., 34, 371–374,
https://doi.org/10.1046/j.1365-2052.2003.01028.x, 2003.
Mattioli, R. C., Pandey, V. S., Murray, M., and Fitzpatrick, J. L.: Immunogenetic
influences on tick resistance in African cattle with particular reference to
trypanotolerant N'Dama (
Bos taurus) and trypanosusceptible Gobra zebu (
Bos indicus) cattle, Acta
Trop., 75, 263–277, https://doi.org/10.1016/S0001-706X(00)00063-2, 2000.
NextGen Consortium: The European Union's Seventh Framework Programme
(FP7/2010-2014) provided funding for the project under grant agreement no
244356-“NextGen”, available at:
https://cordis.europa.eu/docs/results/244/244356/final1-nextgen-final-report-12092014-v2.pdf, last access: 31 January 2020.
Pomp, D., Zou, T., Clutter, A. C., and Barendse, W.: Rapid communication: mapping
of leptin to bovine chromosome 4 by linkage analysis of a PCR-based
polymorphism, J. Anim. Sci., 75, 14–27,
https://doi.org/10.2527/1997.7551427x, 1997.
Rock, F. L., Altman, S. W., van Heek, M., Kastelein, R. A., and Bazan, J. F.: The leptin
haemopoietic cytokine fold is stabilized by an intrachain disulfide bond,
Horm. Metab. Res., 28, 649–652, https://doi.org/10.1055/s-2007-979871, 1996.
Santos-Alvarez, J., Goberna, R., and Sanchez-Margalet, V.: Human leptin
stimulates proliferation and activation of human circulating monocytes,
Cell. Immunol., 194, 6–11, https://doi.org/10.1006/cimm.1999.1490, 1999.
Sjakste, T., Paramonova, N., Grislis, Z., Trapina, I., and Kairisa, D.: Analysis
of the single-nucleotide polymorphism in the 5'UTR and part of intron 1 of
the sheep MSTN gene, DNA Cell Biol., 30, 433–444,
https://doi.org/10.1089/dna.2010.1153, 2011.
Sprang, S. R. and Bazan, J. F.: Cytokine structural taxonomy and mechanisms of
receptor engagement, Curr. Opin. Struc. Biol., 5, 114–121,
https://doi.org/10.1016/0959-440X(93)90144-A, 1993.
Yutzey, K. E., Kline, R. L., and Konieczny, S. F.: An internal regulatory element
controls troponin I gene expression, Mol. Cell Biol., 9, 1397–1405,
https://doi.org/10.1128/mcb.9.4.1397, 1989.
Zhang, F., Basinski, M. B., Beals, J. M., Briggs, S. L., Churgay, L. M., Clawson,
D. K., DiMarchi, R. D., Furman, T. C., Hale, J. E., Hsiung, H. M., Schoner, B. E.,
Smith, D. P., Zhang, X. Y., Wery, J. P., and Schevitz, R. W.: Crystal structure of the
obese protein leptin-E100, Nature, 387, 206–209, https://doi.org/10.1038/387206a0,
1997.
Zhou, H., Hickford, J. G., and Fang, Q.: A two-step procedure for extracting
genomic DNA from dried blood spots on filter paper for polymerase chain
reaction amplification, Anal. Biochem., 354, 159–161, https://doi.org/10.1016/j.ab.2006.03.042, 2006.