Articles | Volume 60, issue 2
https://doi.org/10.5194/aab-60-51-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/aab-60-51-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Genome-wide QTL mapping results for regional DXA body composition and bone mineral density traits in pigs
Sophie Rothammer
CORRESPONDING AUTHOR
Chair of Animal Genetics and Husbandry, LMU Munich, 80539 Munich,
Germany
Maren Bernau
Livestock Center of the Faculty of Veterinary Medicine, LMU Munich,
85764 Oberschleissheim, Germany
Prisca V. Kremer-Rücker
Livestock Center of the Faculty of Veterinary Medicine, LMU Munich,
85764 Oberschleissheim, Germany
University of Applied Sciences Weihenstephan-Triesdorf, 91746 Weidenbach,
Germany
Ivica Medugorac
Chair of Animal Genetics and Husbandry, LMU Munich, 80539 Munich,
Germany
Armin M. Scholz
Livestock Center of the Faculty of Veterinary Medicine, LMU Munich,
85764 Oberschleissheim, Germany
Related authors
No articles found.
Prisca V. Kremer-Rücker, Kathrin M. Abel, Lea M. Lorenz, Christine Schmidt, Mirjam Lechner, Kim F. Schubert, Amalie A. Köhler, Saskia Meier, and Armin M. Scholz
Arch. Anim. Breed., 67, 271–284, https://doi.org/10.5194/aab-67-271-2024, https://doi.org/10.5194/aab-67-271-2024, 2024
Short summary
Short summary
Tail tip inflammation is a well-known animal health and welfare problem in beef cattle, but data on tail tip necrosis in dairy cows are scarce. We examined the tail tips of 641 cows from five different herds to assess whether lesions occur in dairy cows, what type of lesions occur, and how common they are. We found different types of lesions and classified them into seven groups. Tail tip lesions were very common, suggesting that tail lesions in dairy cows require further investigation.
Maren Bernau, Juliane Schrott, Sebastian Schwanitz, Lena Sophie Kreuzer, and Armin Manfred Scholz
Arch. Anim. Breed., 63, 103–111, https://doi.org/10.5194/aab-63-103-2020, https://doi.org/10.5194/aab-63-103-2020, 2020
Short summary
Short summary
The present study evaluated bone mineralisation (in terms of bone mineral density (BMD) and bone mineral content (BMC)) and body composition traits using dual-energy X-ray absorptiometry three times during growth in entire boars (EB), immunocastrated boars (IB), and surgically castrated boars (SB). Nine body regions were analysed for bone mineral traits and compared for the sex types. Significant differences were found regarding BMD among EB, IB, and SB and regarding different body regions.
Paula Maas, Beata Grzegrzółka, Philipp Kreß, Martin Oberle, Michael Judas, and Prisca Valerie Kremer-Rücker
Arch. Anim. Breed., 63, 69–80, https://doi.org/10.5194/aab-63-69-2020, https://doi.org/10.5194/aab-63-69-2020, 2020
Short summary
Short summary
Carp is one of the most important fish in aquaculture. For future breeding programs, precise phenotyping is required. CT technology has been used to predict body composition in mirror carps. Back fat has proven to be a suitable parameter for predicting the fillet fat content. The volume calculation of back fat provides better results than a two-dimensional thickness measurement of back fat. The fillet yield can be predicted with moderate results by CT-based thickness measurements of the fillet.
Related subject area
Subject: Quantitative genetics and estimation of breeding value | Animal: Pigs
Improvement of the in vitro fertilization and embryo development using frozen–thawed spermatozoa of microminipigs
Zhao Namula, Yasuhiro Isumi, Yoko Sato, Quynh Anh Le, Qingyi Lin, Koki Takebayashi, Maki Hirata, Fuminori Tanihara, Chommanart Thongkittidilok, and Takeshige Otoi
Arch. Anim. Breed., 64, 265–271, https://doi.org/10.5194/aab-64-265-2021, https://doi.org/10.5194/aab-64-265-2021, 2021
Short summary
Short summary
This study aimed to compare the quality of frozen–thawed spermatozoa from microminipig boars. We also evaluated the effects of caffeine and heparin as well as the sperm–oocyte co-incubation length on the fertilization and embryonic development. We found that the presence of caffeine in the in vitro fertilization (IVF) medium and the appropriate length of sperm–oocyte co-incubation may have beneficial effects for improving IVF results when using microminipig spermatozoa with low quality.
Cited articles
Alam, I., Carr, L. G., Liang, T., Liu, Y., Edenberg, H. J., Econs, M. J., and Turner, C. H.: Identification of genes influencing skeletal phenotypes in congenic P/NP rats, J. Bone Miner. Res., 25, 1314–1325, https://doi.org/10.1002/jbmr.8, 2010.
Ames, S. K., Ellis, K. J., Gunn, S. K., Copeland, K. C., and Abrams, S. A.: Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children, J. Bone Miner. Res., 14, 740–746, https://doi.org/10.1359/jbmr.1999.14.5.740, 1999.
Arlot, M. E., Sornay-Rendu, E., Garnero, P., Vey-Marty, B., and Delmas, P. D.: Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort, J. Bone Miner. Res., 12, 683–690, https://doi.org/10.1359/jbmr.1997.12.4.683, 1997.
Beamer, W. G., Shultz, K. L., Donahue, L. R., Churchill, G. A., Sen, S., Wergedal, J. R., Baylink, D. J., and Rosen, C. J.: Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice, J. Bone Miner. Res., 16, 1195–1206, https://doi.org/10.1359/jbmr.2001.16.7.1195, 2001.
Bian, Y. and Holland, J. B.: Ensemble Learning of QTL Models Improves Prediction of Complex Traits, G3 (Bethesda), 5, 2073–2084, https://doi.org/10.1534/g3.115.021121, 2015.
Blanchard, F., Duplomb, L., Baud'huin, M., and Brounais, B.: The dual role of IL-6-type cytokines on bone remodeling and bone tumors, Cytokine Growth F. R., 20, 19–28, https://doi.org/10.1016/j.cytogfr.2008.11.004, 2009.
Both, J., Krijgsman, O., Bras, J., Schaap, G. R., Baas, F., Ylstra, B., and Hulsebos, T. J.: Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma, PloS one, 9, e115835, https://doi.org/10.1371/journal.pone.0115835, 2014.
Cagle, A. P., Waguespack, S. G., Buckingham, B. A., Shankar, R. R., and Dimeglio, L. A.: Severe infantile hypercalcemia associated with Williams syndrome successfully treated with intravenously administered pamidronate, Pediatrics, 114, 1091–1095, https://doi.org/10.1542/peds.2003-1146-L, 2004.
Cao, J. J.: Effects of obesity on bone metabolism, J. Orthop. Surg. Res., 6, https://doi.org/10.1186/1749-799x-6-30, 2011.
Carter, D. R., Bouxsein, M. L., and Marcus, R.: New approaches for interpreting projected bone densitometry data, J. Bone Miner. Res., 7, 137–145, https://doi.org/10.1002/jbmr.5650070204, 1992.
Clark, D. L., Clark, D. I., Beever, J. E., and Dilger, A. C.: Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass, J. Anim. Sci., 93, 2546–2558, https://doi.org/10.2527/jas.2014-8389, 2015.
El Maghraoui, A. and Roux, C.: DXA scanning in clinical practice, QJM, monthly journal of the Association of Physicians, 101, 605–617, https://doi.org/10.1093/qjmed/hcn022, 2008.
Franchimont, N., Wertz, S., and Malaise, M.: Interleukin-6: An osteotropic factor influencing bone formation?, Bone, 37, 601–606, https://doi.org/10.1016/j.bone.2005.06.002, 2005.
Francke, U.: Williams-Beuren syndrome: genes and mechanisms, Hum. Mol. Genet., 8, 1947–1954, 1999.
Fukawa, K. and Kusuhara, S.: The genetic and non-genetic aspects of leg weakness and osteochondrosis in pigs – Review, Asian Austral. J. Anim., 14, 114–122, 2001.
Gilmour, A. R., Gogel, B. J., Cullis, B. R., and Thompson, R.: ASReml User Guide (Release 3.0), available at: http://vsni.de/downloads/asreml/release3/UserGuide.pdf (last access: 27 February 2014), 2009.
Heffner, E. L., Sorrells, M. E., and Jannink, J. L.: Genomic Selection for Crop Improvement, Crop. Sci., 49, 1–12, https://doi.org/10.2135/cropsci2008.08.0512, 2009.
Hernandez-de Sosa, N., Athanasiadis, G., Malouf, J., Laiz, A., Marin, A., Herrera, S., Farrerons, J., Soria, J. M., and Casademont, J.: Heritability of bone mineral density in a multivariate family-based study, Calcified Tissue Int., 94, 590–596, https://doi.org/10.1007/s00223-014-9852-9, 2014.
Hicks, A. N., Lorenzetti, D., Gilley, J., Lu, B., Andersson, K. E., Miligan, C., Overbeek, P. A., Oppenheim, R., and Bishop, C. E.: Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) regulates axon integrity in the mouse embryo, PloS one, 7, e47869, https://doi.org/10.1371/journal.pone.0047869, 2012.
International Mouse Phenotyping Consortium: available at: http://www.mousephenotype.org, last access: 25 November 2016.
Jin, C., Ding, P., Wang, Y., and Ma, D.: Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8, FEBS letters, 579, 6375–6382, https://doi.org/10.1016/j.febslet.2005.10.021, 2005.
Kaufman, J. M., Ostertag, A., Saint-Pierre, A., Cohen-Solal, M., Boland, A., Van Pottelbergh, I., Toye, K., de Vernejoul, M. C., and Martinez, M.: Genome-wide linkage screen of bone mineral density (BMD) in European pedigrees ascertained through a male relative with low BMD values: evidence for quantitative trait loci on 17q21-23, 11q12-13, 13q12-14, and 22q11, J. Clin. Endocr. Metab., 93, 3755–3762, https://doi.org/10.1210/jc.2008-0678, 2008.
Laenoi, W., Uddin, M. J., Cinar, M. U., Grosse-Brinkhaus, C., Tesfaye, D., Jonas, E., Scholz, A. M., Tholen, E., Looft, C., Wimmers, K., Phatsara, C., Juengst, H., Sauerwein, H., Mielenz, M., and Schellander, K.: Quantitative trait loci analysis for leg weakness-related traits in a Duroc x Pietrain crossbred population, Genet. Sel. Evol., 43, 1–7, https://doi.org/10.1186/1297-9686-43-13, 2011.
Laenoi, W., Rangkasenee, N., Uddin, M. J., Cinar, M. U., Phatsara, C., Tesfaye, D., Scholz, A. M., Tholen, E., Looft, C., Mielenz, M., Sauerwein, H., Wimmers, K., and Schellander, K.: Association and expression study of MMP3, TGFbeta1 and COL10A1 as candidate genes for leg weakness-related traits in pigs, Mol. Biol. Rep., 39, 3893–3901, https://doi.org/10.1007/s11033-011-1168-5, 2012.
Lee, H. L., Bae, O. Y., Baek, K. H., Kwon, A., Hwang, H. R., Qadir, A. S., Park, H. J., Woo, K. M., Ryoo, H. M., and Baek, J. H.: High extracellular calcium-induced NFATc3 regulates the expression of receptor activator of NF-kappaB ligand in osteoblasts, Bone, 49, 242–249, https://doi.org/10.1016/j.bone.2011.04.006, 2011.
Luk, F., Yu, Y., Dong, H. T., Walsh, W. R., and Yang, J. L.: New gene groups associated with dissimilar osteoblastic differentiation are linked to osteosarcomagenesis, Cancer genomics & proteomics, 8, 65–75, 2011.
Markljung, E., Jiang, L., Jaffe, J. D., Mikkelsen, T. S., Wallerman, O., Larhammar, M., Zhang, X., Wang, L., Saenz-Vash, V., Gnirke, A., Lindroth, A. M., Barres, R., Yan, J., Stromberg, S., De, S., Ponten, F., Lander, E. S., Carr, S. A., Zierath, J. R., Kullander, K., Wadelius, C., Lindblad-Toh, K., Andersson, G., Hjalm, G., and Andersson, L.: ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth, PLoS Biol., 7, e1000256, https://doi.org/10.1371/journal.pbio.1000256, 2009.
Meuwissen, T. H. E., Karlsen, A., Lien, S., Olsaker, I., and Goddard, M. E.: Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping, Genetics, 161, 373–379, 2002.
Nicolaidou, V., Wong, M. M., Redpath, A. N., Ersek, A., Baban, D. F., Williams, L. M., Cope, A. P., and Horwood, N. J.: Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation, PloS one, 7, e39871, https://doi.org/10.1371/journal.pone.0039871, 2012.
Origins of bone and cartilage disease project: Gene of the month June 2015: Edc4: available at: http://www.boneandcartilage.com/GOTMarchive.html (last access: 25 November 2016), 2015.
Pocock, N. A., Eisman, J. A., Hopper, J. L., Yeates, M. G., Sambrook, P. N., and Eberl, S.: Genetic determinants of bone mass in adults. A twin study, J. Clin. Invest., 80, 706–710, https://doi.org/10.1172/JCI113125, 1987.
R: A Language and Environment for Statistical Computing: available at: http://www.R-project.org (last access: 13 February 2017), 2008.
Rangkasenee, N., Murani, E., Brunner, R., Schellander, K., Cinar, M. U., Scholz, A. M., Luther, H., Hofer, A., Ponsuksili, S., and Wimmers, K.: KRT8, FAF1 and PTH1R gene polymorphisms are associated with leg weakness traits in pigs, Mol. Biol. Rep., 40, 2859–2866, https://doi.org/10.1007/s11033-012-2301-9, 2013.
Rothammer, S., Kremer, P. V., Bernau, M., Fernandez-Figares, I., Pfister-Schar, J., Medugorac, I., and Scholz, A. M.: Genome-wide QTL mapping of nine body composition and bone mineral density traits in pigs, Genet. Sel. Evol., 46, 1–11, https://doi.org/10.1186/s12711-014-0068-2, 2014.
Sakamoto, K., Sato, Y., Shinka, T., Sei, M., Nomura, I., Umeno, M., Ewis, A. A., and Nakahori, Y.: Proteasome subunits mRNA expressions correlate with male BMI: implications for a role in obesity, Obesity (Silver Spring), 17, 1044–1049, https://doi.org/10.1038/oby.2008.612, 2009.
Sasaki, Y., Nagai, K., Nagata, Y., Doronbekov, K., Nishimura, S., Yoshioka, S., Fujita, T., Shiga, K., Miyake, T., Taniguchi, Y., and Yamada, T.: Exploration of genes showing intramuscular fat deposition-associated expression changes in musculus longissimus muscle, Anim. Genet., 37, 40–46, https://doi.org/10.1111/j.1365-2052.2005.01380.x, 2006.
Schousboe, J. T., Shepherd, J. A., Bilezikian, J. P., and Baim, S.: Executive Summary of the 2013 International Society for Clinical Densitometry Position Development Conference on Bone Densitometry, J. Clin. Densitom., 16, 455–466, https://doi.org/10.1016/j.jocd.2013.08.004, 2013.
Serao, N. V., Veroneze, R., Ribeiro, A. M., Verardo, L. L., Braccini Neto, J., Gasparino, E., Campos, C. F., Lopes, P. S., and Guimaraes, S. E.: Candidate gene expression and intramuscular fat content in pigs, J. Anim. Breed. Genet., 128, 28–34, https://doi.org/10.1111/j.1439-0388.2010.00887.x, 2011.
Seto, E., Yoshida-Sugitani, R., Kobayashi, T., and Toyama-Sorimachi, N.: The Assembly of EDC4 and Dcp1a into Processing Bodies Is Critical for the Translational Regulation of IL-6, PloS one, 10, e0123223, https://doi.org/10.1371/journal.pone.0123223, 2015.
Sornay-Rendu, E., Boutroy, S., Munoz, F., and Delmas, P. D.: Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, independently of decreased bmd, The OFELY study, Osteoporosis Int., 17, S97–S97, 2006.
Soroko, S. B., Barrett-Connor, E., Edelstein, S. L., and Kritz-Silverstein, D.: Family history of osteoporosis and bone mineral density at the axial skeleton: the Rancho Bernardo Study, J. Bone Miner. Res., 9, 761–769, https://doi.org/10.1002/jbmr.5650090602, 1994.
Thomas, G., Betters, J. L., Lord, C. C., Brown, A. L., Marshall, S., Ferguson, D., Sawyer, J., Davis, M. A., Melchior, J. T., Blume, L. C., Howlett, A. C., Ivanova, P. T., Milne, S. B., Myers, D. S., Mrak, I., Leber, V., Heier, C., Taschler, U., Blankman, J. L., Cravatt, B. F., Lee, R. G., Crooke, R. M., Graham, M. J., Zimmermann, R., Brown, H. A., and Brown, J. M.: The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome, Cell reports, 5, 508–520, https://doi.org/10.1016/j.celrep.2013.08.047, 2013.
Trammell, S. A. and Brenner, C.: NNMT: A Bad Actor in Fat Makes Good in Liver, Cell Metabolism, 22, 200–201, https://doi.org/10.1016/j.cmet.2015.07.017, 2015.
Ulrich, D., van Rietbergen, B., Laib, A., and Ruegsegger, P.: The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone, Bone, 25, 55–60, 1999.
Valero, R., Bayes, M., Francisca Sanchez-Font, M., Gonzalez-Angulo, O., Gonzalez-Duarte, R., and Marfany, G.: Characterization of alternatively spliced products and tissue-specific isoforms of USP28 and USP25, Genome Biology 2001, 2, research0043.1–0043.10, 2001.
Vogl, T. J., Reith, W., and Rummeny, E. J.: Diagnostische und interventionelle Radiologie, Springer-Verlag Berlin Heidelberg, 2011.
Wei, T.: corrplot: Visualization of a correlation matrix, available at: http://CRAN.R-project.org/package=corrplot (last access: 13 February 2017), 2013.
Willing, M. C., Torner, J. C., Burns, T. L., Janz, K. F., Marshall, T., Gilmore, J., Deschenes, S. P., Warren, J. J., and Levy, S. M.: Gene polymorphisms, bone mineral density and bone mineral content in young children: the Iowa Bone Development Study, Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 14, 650–658, https://doi.org/10.1007/s00198-003-1416-1, 2003.
Wright, N. C., Looker, A. C., Saag, K. G., Curtis, J. R., Delzell, E. S., Randall, S., and Dawson-Hughes, B.: The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine, J. Bone Miner. Res., 29, 2520–2526, https://doi.org/10.1002/jbmr.2269, 2014.
Xiao, S. M., Gao, Y., Cheung, C. L., Bow, C. H., Lau, K. S., Sham, P. C., Tan, K. C., and Kung, A. W.: Association of CDX1 binding site of periostin gene with bone mineral density and vertebral fracture risk, Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 23, 1877–1887, https://doi.org/10.1007/s00198-011-1861-1, 2012.
Yadav, A., Saini, V., and Arora, S.: MCP-1: chemoattractant with a role beyond immunity: a review, Clin. Chim. Acta, 411, 1570–1579, https://doi.org/10.1016/j.cca.2010.07.006, 2010.
Yang, T. L., Guo, Y., Liu, Y. J., Shen, H., Liu, Y. Z., Lei, S. F., Li, J., Tian, Q., and Deng, H. W.: Genetic variants in the SOX6 gene are associated with bone mineral density in both Caucasian and Chinese populations, Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 23, 781–787, https://doi.org/10.1007/s00198-011-1626-x, 2012.
Yu, E. W., Thomas, B. J., Brown, J. K., and Finkelstein, J. S.: Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT, J. Bone Miner. Res., 27, 119–124, https://doi.org/10.1002/jbmr.506, 2012.
Zhao, L. J., Jiang, H., Papasian, C. J., Maulik, D., Drees, B., Hamilton, J., and Deng, H. W.: Correlation of obesity and osteoporosis: Effect of fat mass on the determination of osteoporosis, J. Bone Miner. Res., 23, 17–29, https://doi.org/10.1359/Jbmr.070813, 2008.
Zhu, J., Shimizu, E., Zhang, X., Partridge, N. C., and Qin, L.: EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix, J. Cell. Biochem., 112, 1749–1760, https://doi.org/10.1002/jcb.23094, 2011.
Short summary
In a previous mapping study including body composition and bone mineral traits obtained by DXA scans, QTL for bone mineral traits were rare. This study aimed to clarify if the mapping results were influenced by the analysed body regions. Hence, analyses were repeated using the same material (551 pigs) and methods but two manually defined body regions instead of the initial whole-body setting. Our results show an overall high consistency of mapping results especially for body composition traits.
In a previous mapping study including body composition and bone mineral traits obtained by DXA...