Breast meat quality of chickens with divergent growth rates and its relation to growth curve parameters
Abstract. The effects of the increase of body weight of contemporary broilers during growth on functional meat quality and color characteristics of the chicken breast muscle are controversially debated. Therefore, male chickens (n = 264) of a fast-growing commercial broiler (Ross 308) and two slow-growing experimental meat-type chicken lines were compared at equal age and at similar body weight in order to investigate the effect of growth rate on selected functional breast meat traits and meat color. Additionally, the breast meat characteristics of birds with different growth profiles were compared within lines. When the body weight of commercial broilers reached about 40 to 60 % of their growth potential, they exhibited particularly high ultimate pH values compared with slow-growing lines. The ability of the meat of fast-growing broilers to retain water during cooking was impaired (5 to 16 percentage points increased cooking loss compared to slow-growing lines), which, in contrast to pH, was only marginally affected by body weight and/or age at slaughter. No unfavorable correlations of breast meat quality traits with the growth profile, represented by growth curve parameters derived from the Gompertz–Laird equation, were detected within any of the investigated chicken lines. It is noteworthy that the associations of ultimate pH and cooking loss with maximum growth speed indicate a non-linear relationship. Thus, some of the functional characteristics of breast meat of the fast-growing broiler resembled the white-striping defect described for poultry meat, but the hypothesis that selection on increased growth rates is detrimental for meat quality per se could not be confirmed. In fact, an elevated growth potential in particular, i.e., body weight at maturity, could have some beneficial effects for the water-holding capacity of breast meat, regardless of the genotypic growth rate.