Articles | Volume 69, issue 1
https://doi.org/10.5194/aab-69-25-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/aab-69-25-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Runs of homozygosity reveal candidate genes for economic traits in Danish Large White pigs
Weimin Ding
Anhui Antai Agricultural Development Co., Ltd, Guangde City 242200, China
Xudong Wu
Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei City 230001, China
Yu Bu
College of Animal Science and Technology, Anhui Agricultural University, Hefei City 230031, China
Wei Zhang
Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei City 230001, China
Yuanlang Wang
Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei City 230001, China
Yueyun Ding
College of Animal Science and Technology, Anhui Agricultural University, Hefei City 230031, China
Xianrui Zheng
College of Animal Science and Technology, Anhui Agricultural University, Hefei City 230031, China
Xiaodong Zhang
College of Animal Science and Technology, Anhui Agricultural University, Hefei City 230031, China
Zongjun Yin
CORRESPONDING AUTHOR
College of Animal Science and Technology, Anhui Agricultural University, Hefei City 230031, China
Cited articles
Addo, S. and Jung, L.: An insight into the runs of homozygosity distribution and breed differentiation in Mangalitsa pigs, Front. Genet., 13, 909986, https://doi.org/10.3389/fgene.2022.909986, 2022.
Ai, H., Huang, L., and Ren, J.: Genetic diversity, linkage disequilibrium and selection signatures in Chinese and Western pigs revealed by genome-wide SNP markers, PLoS One, 8, e56001, https://doi.org/10.1371/journal.pone.0056001, 2013.
Ajmone-Marsan, P., Boettcher, P. J., Ginja, C., Kantanen, J., and Lenstra, J. A. (Eds.): Genomic Characterization Of Animal Genetic Resources: Practical Guide, Food and Agriculture Organization of the United Nations, Rome, Italy, 978-92-5-137298-2, https://doi.org/10.4060/cc3079en 2023.
Ataei-Nazari, S., Amoushahi, M., Madsen, J. F., Jensen, J., Heuck, A., Mohammadi-Sangcheshmeh, A., and Lykke-Hartmann, K.: Cyclin-dependent kinase 6 (CDK6) as a potent regulator of the ovarian primordial-to-primary follicle transition, Front. Cell Dev. Biol., 10, 1036917, https://doi.org/10.3389/fcell.2022.1036917, 2022.
Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M., and Wilson, J. F.: Runs of homozygosity: windows into population history and trait architecture, Nat. Rev. Genet., 19, 220–234, https://doi.org/10.1038/nrg.2017.109, 2018.
Chen, C., Zhu, B., Tang, X., Chen, B., Liu, M., Gao, N., Li, S., and Gu, J.: Genome-wide assessment of runs of homozygosity by whole-genome sequencing in diverse horse breeds worldwide, Genes, 14, 1211, https://doi.org/10.3390/genes14061211, 2023.
Ghoreishifar, M., Vahedi, S. M., Salek Ardestani, S., Khansefid, M., and Pryce, J. E.: Genome-wide assessment and mapping of inbreeding depression identifies candidate genes associated with semen traits in Holstein bulls, BMC Genomics, 24, 230, https://doi.org/10.1186/s12864-023-09298-1, 2023.
Hewett, A. M., Stoffel, M. A., Peters, L., Johnston, S. E., and Pemberton, J. M.: Selection, recombination and population history effects on runs of homozygosity (ROH) in wild red deer (Cervus elaphus), Heredity (Edinb), 130, 242–250, https://doi.org/10.1038/s41437-023-00602-z, 2023.
Hill, E. W., Stoffel, M. A., McGivney, B. A., MacHugh, D. E., and Pemberton, J. M.: Inbreeding depression and the probability of racing in the Thoroughbred horse, Proc. Biol. Sci., 289, 20220487, https://doi.org/10.1098/rspb.2022.0487, 2022.
Hou, Y., Hu, M., Zhou, H., Li, C., Li, X., Liu, X., Zhao, Y., and Zhao, S.: Neuronal signal transduction-involved genes in pig hypothalamus affect feed efficiency as revealed by transcriptome analysis, BioMed Res. Int., 2018, 5862571, https://doi.org/10.1155/2018/5862571, 2018.
Hu, Z. L., Park, C. A., and Reecy, J. M.: Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services, Nucleic Acids Res., 50, D956–D961, https://doi.org/10.1093/nar/gkab1116, 2022.
Ji, Q., Yao, Y., Li, Z., Zhou, Z., Qian, J., Tang, Q., and Xie, J.: Characterizing identity by descent segments in Chinese interpopulation unrelated individual pairs, Mol. Genet. Genomics, 299, 37, https://doi.org/10.1007/s00438-024-02132-7, 2024.
Jiang, Y., Li, X., Liu, J., Zhang, W., Zhou, M., Wang, J., Liu, L., Su, S., Zhao, F., Chen, H., and Wang, C.: Genome-wide detection of genetic structure and runs of homozygosity analysis in Anhui indigenous and Western commercial pig breeds using PorcineSNP80k data, BMC Genomics, 23, 373, https://doi.org/10.1186/s12864-022-08583-9, 2022.
Li, N., Zhou, Y., Cai, J., Wang, Y., Zhou, X., Hu, M., Li, Y., Zhang, H., Li, J., Cai, B., and Yuan, X.: A novel trans-acting lncRNA of ACTG1 that induces the remodeling of ovarian follicles, Int. J. Biol. Macromol., 242, 125170, https://doi.org/10.1016/j.ijbiomac.2023.125170, 2023.
Li, W., Wu, X., Xiang, D., Zhang, W., Wu, L., Meng, X., Huo, J., Yin, Z., Fu, G., and Zhao, G.: Genome-wide detection for runs of homozygosity in Baoshan pigs using whole genome resequencing, Genes (Basel), 15, 233, https://doi.org/10.3390/genes15020233, 2024.
Liu, J., Sebastià, C., Jové-Juncà, T., Quintanilla, R., González-Rodríguez, O., Passols, M., Castelló, A., Sánchez, A., Ballester, M., and Folch, J. M.: Identification of genomic regions associated with fatty acid metabolism across blood, liver, backfat and muscle in pigs, Genet. Sel. Evol., 56, 66, https://doi.org/10.1186/s12711-024-00933-3, 2024a.
Liu, S. Q., Xu, Y. J., Chen, Z. T., Li, H., Zhang, Z., Wang, Q. S., and Pan, Y. C.: Genome-wide detection of runs of homozygosity and heterozygosity in Tunchang pigs, Animal, 18, 101236, https://doi.org/10.1016/j.animal.2024.101236, 2024b.
Lozada-Soto, E. A., Parker Gaddis, K. L., Tiezzi, F., Jiang, J., Ma, L., Toghiani, S., VanRaden, P. M., and Maltecca, C.: Inbreeding depression for producer-recorded udder, metabolic, and reproductive diseases in US dairy cattle, J. Dairy Sci., 107, 3032–3046, https://doi.org/10.3168/jds.2023-23909, 2024.
Lynch, M. T., Maloney, K. A., Xu, H., Perry, J. A., Center, R. G., Shuldiner, A. R., and Mitchell, B. D.: Associations of genome-wide and regional autozygosity with 96 complex traits in old order Amish, BMC Genomics, 24, 134, https://doi.org/10.1186/s12864-023-09208-5, 2023.
Ma, G., Tan, X., Yan, Y., Zhang, T., Wang, J., Chen, X., and Xu, J.: A genome-wide association study identified candidate regions and genes for commercial traits in a Landrace population, Front. Genet., 15, 1505197, https://doi.org/10.3389/fgene.2024.1505197, 2024.
Macharia, J. K., Kim, J., Kim, M., Cho, E., Munyaneza, J. P., and Lee, J. H.: Characterisation of runs of homozygosity and inbreeding coefficients in the red-brown Korean native chickens, Anim. Biosci., 37, 1355–1366, https://doi.org/10.5713/ab.23.0514, 2024.
Matsumoto, Y., Ruamrungsri, N., Arahori, M., Ukawa, H., Ohashi, K., Lyons, L. A., and Ishihara, G.: Genetic relationships and inbreeding levels among geographically distant populations of Felis catus from Japan and the United States, Genomics, 113, 104–110, https://doi.org/10.1016/j.ygeno.2020.11.018, 2021.
Mooney, J. A., Yohannes, A., and Lohmueller, K. E.: The impact of identity by descent on fitness and disease in dogs, P. Natl. Acad. Sci. USA, 118, e2019116118, https://doi.org/10.1073/pnas.2019116118, 2021.
Mu, H. Y., Chen, J. Z., Huang, W. J., Huang, G., Deng, M. Y., Hong, S. M., Ai, P., Gao, C., and Zhou, H. K.: OmicShare tools: a zero-code interactive online platform for biological data analysis and visualization, iMeta., 5, e228, https://doi.org/10.1002/imt2.228, 2024.
Nosková, A., Bhati, M., Kadri, N. K., Crysnanto, D., Neuenschwander, S., Hofer, A., and Pausch, H.: Characterization of a haplotype-reference panel for genotyping by low-pass sequencing in Swiss Large White pigs, BMC Genomics, 22, 290, https://doi.org/10.1186/s12864-021-07610-5, 2021.
Nosrati, M., Asadollahpour Nanaei, H., Javanmard, A., and Esmailizadeh, A.: The pattern of runs of homozygosity and genomic inbreeding in world-wide sheep populations, Genomics, 113, 1407–1415, https://doi.org/10.1016/j.ygeno.2021.03.005, 2021.
Oster, N., Szewczuk, M. A., Zych, S., Stankiewicz, T., and Błaszczyk, B., Wieczorek-Dąbrowska, M.: Association between polymorphism in the Janus kinase 2 (JAK2) gene and selected performance traits in cattle and sheep, Animals (Basel), 13, 2470, https://doi.org/10.3390/ani13152470, 2023.
Pemberton, T. J., Absher, D., Feldman, M. W., Myers, R. M., Rosenberg, N. A., and Li, J. Z.: Genomic patterns of homozygosity in worldwide human populations, Am. J. Hum. Genet., 91, 275–292, https://doi.org/10.1016/j.ajhg.2012.06.014, 2012.
Peripolli, E., Munari, D. P., Silva, M. V. G. B., Lima, A. L. F., Irgang, R., and Baldi, F.: Runs of homozygosity: current knowledge and applications in livestock, Anim. Genet., 48, 255–271, https://doi.org/10.1111/age.12526, 2017.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., and Sham, P. C.: PLINK: a tool set for whole-genome association and population-based linkage analyses, Am. J. Hum. Genet., 81, 559–575, https://doi.org/10.1086/519795, 2007.
Purfield, D. C., Berry, D. P., McParland, S., and Bradley, D. G.: Runs of homozygosity and population history in cattle, BMC Genet., 13, 70, https://doi.org/10.1186/1471-2156-13-70, 2012.
Rempel, L. A., Nonneman, D. J., Wise, T. H., Erkens, T., Peelman, L. J., and Rohrer, G. A.: Association analyses of candidate single nucleotide polymorphisms on reproductive traits in swine, J. Anim. Sci., 88, 1–15, https://doi.org/10.2527/jas.2009-1985, 2010.
Rostamzadeh Mahdabi, E., Esmailizadeh, A., Han, J., and Wang, M. S.: Comparative analysis of runs of homozygosity islands in indigenous and commercial chickens revealed candidate loci for disease resistance and production traits, Vet. Med. Sci., 11, e70074, https://doi.org/10.1002/vms3.70074, 2025.
Saleh, M. S., Landi, V., Derks, M. F. L., Centoducati, G., Groenen, M. A. M., De Palo, P., Ciani, E., Pugliese, N., Circella, E., and Camarda, A.: Genomic scans for selection and runs of homozygosity in southern Italian turkey populations, Poult. Sci., 104, 104750, https://doi.org/10.1016/j.psj.2024.104750, 2025.
Schiavo, G., Bovo, S., Muñoz, M., Ribani, A., Alves, E., Araújo, J. P., Bozzi, R., Čandek-Potokar, M., Charneca, R., Fernandez, A. I., Gallo, M., García, F., Karolyi, D., Kušec, G., Martins, J. M., Mercat, M. J., Núñez, Y., Quintanilla, R., Radović, Č., Razmaite, V., Riquet, J., Savić, R., Usai, G., Utzeri, V. J., Zimmer, C., Ovilo, C., and Fontanesi, L.: Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds, Anim. Genet., 52, 155–170, https://doi.org/10.1111/age.13045, 2021.
Shi, L., Wang, L., Liu, J., Deng, T., Yan, H., Zhang, L., Liu, X., Gao, H., Hou, X., Wang, L., and Zhao, F.: Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population, J. Anim. Sci. Biotechnol., 11, 46, https://doi.org/10.1186/s40104-020-00447-0, 2020.
Sievers, J. and Distl, O.: Genomic patterns of homozygosity and genetic diversity in the Rhenish German draught horse, Genes (Basel), 16, 327, https://doi.org/10.3390/genes16030327, 2025.
Subramanian, S. and Kumar, M.: The association between the abundance of homozygous deleterious variants and the morbidity of dog breeds, Biology (Basel), 13, 574, https://doi.org/10.3390/biology13080574, 2024.
Sun, Z., Chang, Y., Huang, L., An, S., Liu, D., Zhang, J., and Miao, Z.: Effects of acorns on meat quality and lipid metabolism-related gene expression in muscle tissues of Yuxi Black pigs, Metabolites, 14, 578, https://doi.org/10.3390/metabo14110578, 2024.
Swinford, N. A., Prall, S. P., Gopalan, S., Williams, C. M., Sheehama, J., Scelza, B. A., and Henn, B. M.: Increased homozygosity due to endogamy results in fitness consequences in a human population, P. Natl. Acad. Sci. USA, 120, e2309552120, https://doi.org/10.1073/pnas.2309552120, 2023.
Tao, L., Liu, H., Adeola, A. C., Xie, H. B., Feng, S. T., and Zhang, Y. P.: The effects of runs-of-homozygosity on pig domestication and breeding, BMC Genomics, 26, https://doi.org/10.1186/s12864-024-11189-y, 2025.
Talebi, R., Szmatoła, T., Mészáros, G., and Qanbari, S.: Runs of homozygosity in modern chicken revealed by sequence data. G3 (Bethesda), 12, 4615–4623, https://doi.org/10.1534/g3.120.401860, 2020.
Wang, S., Yang, J., Li, G., Ding, R., Zhuang, Z., Ruan, D., Wu, J., Yang, H., Zheng, E., Cai, G., Wang, X., and Wu, Z.: Identification of homozygous regions with adverse effects on the five economic traits of Duroc pigs, Front. Vet. Sci., 9, 855933, https://doi.org/10.3389/fvets.2022.855933, 2022.
Wang, Z., Pan, D., Xie, X., Zhong, Z., Wang, F., and Xiao, Q.: Genome-wide detection of runs of homozygosity in Ding'an pigs revealed candidate genes relating to meat quality traits, BMC Genomics, 26, 316, https://doi.org/10.1186/s12864-025-11501-4, 2025.
Wang, Z., Song, B., Yao, J., Li, X., Zhang, Y., Tang, Z., and Yi, G.: Whole-genome analysis reveals distinct adaptation signatures to diverse environments in Chinese domestic pigs, J. Anim. Sci. Biotechnol., 15, 97, https://doi.org/10.1186/s40104-024-01053-0, 2024.
Wientjes, Y. C. J., Peeters, K., Bijma, P., Huisman, A. E., and Calus, M. P. L.: Changes in allele frequencies and genetic architecture due to selection in two pig populations, Genet. Sel. Evol., 56, 76, https://doi.org/10.1186/s12711-024-00941-3, 2024.
Wu, X., Xiang, D., Zhang, W., Ma, Y., Zhao, G., and Yin, Z.: Identification of breed-specific SNPs of Danish Large White pig in comparison with four Chinese local pig breed genomes, Genes (Basel), 15, 623, https://doi.org/10.3390/genes15050623, 2024.
Wu, X., Xiang, D., Duan, B., Zhang, W., Li, M., Ding, Y., Zhao, Z., Zhao, G., and Yin, Z.: Whole-genome selective sweep analysis of Danish Large White and Chinese indigenous pig populations, Anim. Biotechnol., 36, 2467411, https://doi.org/10.1080/10495398.2025.2467411, 2025.
Xiang, Y., Sun, J., Ma, G., Dai, X., Meng, Y., Fu, C., Zhang, Y., Zhao, Q., Li, J., Zhang, S., Zheng, Z., Li, X., Fu, L., Li, K., and Qi, X.: Integrating multi-omics data to identify key functional variants affecting feed efficiency in Large White boars, Genes (Basel), 15, 980, https://doi.org/10.3390/genes15080980, 2024.
Xu, S., Liu, Z., Tian, T., Zhao, W., Wang, Z., Liu, M., Xu, M., Zhang, F., Zhang, Z., Chen, M., Yin, Y., Su, M., Fang, W., Pan, W., Liu, S., Li, M. D., Little, P. J., Kamato, D., Zhang, S., Wang, D., Offermanns, S., Speakman, J. R., and Weng, J.: The clinical antiprotozoal drug halofuginone promotes weight loss by elevating GDF15 and FGF21, Sci. Adv., 11, eadt3142, https://doi.org/10.1126/sciadv.adt3142, 2025.
Yang, Y., Li, M., Zhu, Y., Wang, X., Chen, Q., and Lu, S.: Identification of potential tissue-specific biomarkers involved in pig fat deposition through integrated bioinformatics analysis and machine learning, Heliyon, 10, e31311, https://doi.org/10.1016/j.heliyon.2024.e31311, 2024.
Yi, L., Li, Q., Zhu, J., Cheng, W., Xie, Y., Huang, Y., Zhao, H., Hao, M., Wei, H., and Zhao, S.: Single-nucleus RNA sequencing and lipidomics reveal characteristics of transcriptional and lipid composition in porcine longissimus dorsi muscle, BMC Genomics, 25, 622, https://doi.org/10.1186/s12864-024-10488-8, 2024.
Zhang, S., Yao, Z., Li, X., Zhang, Z., Liu, X., Yang, P., Chen, N., Xia, X., Lyu, S., Shi, Q., Wang, E., Ru, B., Jiang, Y., Lei, C., Chen, H., and Huang, Y.: Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data, BMC Genomics, 23, 460, https://doi.org/10.1186/s12864-022-08645-y, 2022.
Zhao, F., Xie, R., Fang, L., Xiang, R., Yuan, Z., Liu, Y., and Wang, L.: Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep, Evol. Appl., 17, e13697, https://doi.org/10.1111/eva.13697, 2024.
Zhao, Y. X., Gao, G. X., Zhou, Y., Guo, C. X., Li, B., El-Ashram, S., and Li, Z. L.: Genome-wide association studies uncover genes associated with litter traits in the pig, Animal, 16, 100672, https://doi.org/10.1016/j.animal.2022.100672, 2022.
Zhou, P., Yin, C., Wang, Y., Yin, Z., and Liu, Y.: Genomic association analysis of growth and backfat traits in Large White pigs, Genes (Basel), 14, 1258, https://doi.org/10.3390/genes14061258, 2023.
Zhu, Z., He, X., Johnson, C., Stoops, J., Eaker, A. E., Stoffer, D. S., Bell, A., Zarnegar, R., and DeFrances, M. C.: PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein, Biochem. Biophys. Res. Commun., 358, 66–72, https://doi.org/10.1016/j.bbrc.2007.04.096, 2007.
Short summary
The Large White (LW) pig is a valuable breed in the pig industry, known for its growth efficiency and reproductive performance. We identified a fragment of the Danish LW runs of homozygosity (ROH). We then calculated inbreeding coefficients and screened candidate genes from the ROH archipelago for economically important traits. Our results provide useful insights into the function of ROH on a genetic basis and their role in controlling superior traits in Danish LW pigs.
The Large White (LW) pig is a valuable breed in the pig industry, known for its growth...