Articles | Volume 60, issue 4
https://doi.org/10.5194/aab-60-399-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/aab-60-399-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Short tandem repeat (STR) based genetic diversity and relationship of indigenous Niger cattle
Moustapha Grema
Faculté des sciences et techniques, Abdou Moumouni University, BP 10960, Niamey, Niger
Faculté des Sciences Agronomiques, Diffa University, BP 78, Diffa, Niger
Amadou Traoré
Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Biologie et santés animales,
04 BP 8645, Ouagadougou 04, Burkina Faso
Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
Moumouni Issa
Faculté des sciences et techniques, Abdou Moumouni University, BP 10960, Niamey, Niger
Marichatou Hamani
Faculté des sciences et techniques, Abdou Moumouni University, BP 10960, Niamey, Niger
Maaouia Abdou
Faculté des sciences et techniques, Abdou Moumouni University, BP 10960, Niamey, Niger
Albert Soudré
Ecole Normale Supérieure, University of Koudougou, BP 376, Koudougou, Burkina Faso
Moumouni Sanou
Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Biologie et santés animales,
04 BP 8645, Ouagadougou 04, Burkina Faso
Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
Rudolf Pichler
Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
Hamidou H. Tamboura
Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Biologie et santés animales,
04 BP 8645, Ouagadougou 04, Burkina Faso
Yenikoye Alhassane
Faculté des sciences et techniques, Abdou Moumouni University, BP 10960, Niamey, Niger
Kathiravan Periasamy
CORRESPONDING AUTHOR
Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna, Austria
Related authors
M. Maaouia A. Moussa, Moumouni Issa, Amadou Traoré, Moustapha Grema, Marichatou Hamani, Iván Fernández, Albert Soudré, Isabel Álvarez, Moumouni Sanou, Hamidou H. Tamboura, Yenikoye Alhassane, and Félix Goyache
Arch. Anim. Breed., 60, 363–371, https://doi.org/10.5194/aab-60-363-2017, https://doi.org/10.5194/aab-60-363-2017, 2017
Short summary
Short summary
The long-horned Fulani zebu, spread all over the Sahel area, is one of the main cattle groups in Africa. Despite their importance, characterisation of these cattle is poorly developed. The current research illustrated a lack of differentiation among local populations of this cattle group at the body measurements level. Conservation or selection initiatives could be implemented at a cross-boundary level.
Issa Hamadou, Nassim Moula, Seyni Siddo, Moumouni Issa, Hamani Marichatou, Pascal Leroy, and Nicolas Antoine-Moussiaux
Arch. Anim. Breed., 62, 537–545, https://doi.org/10.5194/aab-62-537-2019, https://doi.org/10.5194/aab-62-537-2019, 2019
Short summary
Short summary
This study characterises farmer’s preferences for breeding rams and tackles their willingness to contribute to the wool sheep Koundoum conservation programme through their quantified appreciation of the main phenotypic features of the sheep breed in the region. In Tillabéri region, i.e. the Koundoum sheep’s area of origin, the proportional piling tool is first used in 11 focus group discussions of breeders to determine the main selection criteria of breeding rams. The multi-attribute analysis me
Isabel Álvarez, Iván Fernández, Albert Soudré, Amadou Traoré, Lucía Pérez-Pardal, Moumouni Sanou, Stephane A. R. Tapsoba, Nuria A. Menéndez-Arias, and Félix Goyache
Arch. Anim. Breed., 62, 313–323, https://doi.org/10.5194/aab-62-313-2019, https://doi.org/10.5194/aab-62-313-2019, 2019
Short summary
Short summary
Increasing genetic resistance to gastrointestinal parasite infections in sheep would limit the use of drugs and the emergence of resistant parasites. However, this is a very complex trait. The identification of genomic areas associated with the trait is hindered by genotype–environment interactions. Therefore, it is necessary to obtain information from non-cosmopolitan sheep populations. Here, the West African Djallonké sheep genomic profile is analyzed to contribute to solve this gap.
Seyni Siddo, Nassim Moula, Issa Hamadou, Moumouni Issa, Salissou Issa, Marichatou Hamani, Pascal Leroy, and Nicolas Antoine-Moussiaux
Arch. Anim. Breed., 61, 143–151, https://doi.org/10.5194/aab-61-143-2018, https://doi.org/10.5194/aab-61-143-2018, 2018
Short summary
Short summary
The complex balance between innovation and conservation regarding animal genetic resources makes it difficult to find mutually accepted improvement pathways between breeders, government agencies, and research and education institutions. This study maps stakeholder viewpoints on cattle genetic improvement in Niger using the Q method, which appears effective in identifying the concerns of stakeholders on complex agricultural innovation topics.
M. Maaouia A. Moussa, Moumouni Issa, Amadou Traoré, Moustapha Grema, Marichatou Hamani, Iván Fernández, Albert Soudré, Isabel Álvarez, Moumouni Sanou, Hamidou H. Tamboura, Yenikoye Alhassane, and Félix Goyache
Arch. Anim. Breed., 60, 363–371, https://doi.org/10.5194/aab-60-363-2017, https://doi.org/10.5194/aab-60-363-2017, 2017
Short summary
Short summary
The long-horned Fulani zebu, spread all over the Sahel area, is one of the main cattle groups in Africa. Despite their importance, characterisation of these cattle is poorly developed. The current research illustrated a lack of differentiation among local populations of this cattle group at the body measurements level. Conservation or selection initiatives could be implemented at a cross-boundary level.
Amadou Traoré, Delphin O. Koudandé, Iván Fernández, Albert Soudré, Isabel Álvarez, Siaka Diarra, Fousseyni Diarra, Adama Kaboré, Moumouni Sanou, Hamidou H. Tamboura, and Félix Goyache
Arch. Anim. Breed., 59, 337–344, https://doi.org/10.5194/aab-59-337-2016, https://doi.org/10.5194/aab-59-337-2016, 2016
Short summary
Short summary
Body traits (16 body measurements and 18 qualitative traits) have been analysed in 183 adult sires belonging to nine West African cattle breeds via multifactorial methods to ascertain breeding preferences of African farmers. No clear patterns of homogenisation of the appearance of individuals within cattle breed could be assessed. Since no selection programmes exist and unsupervised matings are the rule, differentiation among African livestock breeds cannot be assessed in European terms.
K. Tindano, N. Moula, A. Traoré, P. Leroy, and N. Antoine-Moussiaux
Arch. Anim. Breed., 58, 415–423, https://doi.org/10.5194/aab-58-415-2015, https://doi.org/10.5194/aab-58-415-2015, 2015
S. Siddo, N. Moula, I. Hamadou, M. Issa, H. Marichatou, P. Leroy, and N. Antoine-Moussiaux
Arch. Anim. Breed., 58, 251–259, https://doi.org/10.5194/aab-58-251-2015, https://doi.org/10.5194/aab-58-251-2015, 2015
Related subject area
Subject: Biodiversity | Animal: Cattle
Genetic diversity and population structure in divergent German cattle selection lines on the basis of milk protein polymorphisms
Development of amplified fragment length polymorphism (AFLP) markers for the identification of Cholistani cattle
Morphological assessment of the Zebu Bororo (Wodaabé) cattle of Niger in the West African zebu framework
Multivariate characterization of morphological traits in West African cattle sires
Lisa G. Hohmann, Christina Weimann, Carsten Scheper, Georg Erhardt, and Sven König
Arch. Anim. Breed., 64, 91–102, https://doi.org/10.5194/aab-64-91-2021, https://doi.org/10.5194/aab-64-91-2021, 2021
Short summary
Short summary
We analyzed the genetic structure of the casein cluster in eight selection lines of the Holstein Friesian, German Simmental and German Black Pied cattle breeds based on casein genotypes in milk. Temporal changes in allele distributions indicated decreasing genetic diversity at the casein loci, explaining the moderate level of genetic differentiation among selection lines. The variability of the casein should be exploited in the future using breeding programs to select genetic lines.
Muhammad Haseeb Malik, Muhammad Moaeen-ud-Din, Ghulam Bilal, Abdul Ghaffar, Raja Danish Muner, Ghazala Kaukab Raja, and Waqas Ahmad Khan
Arch. Anim. Breed., 61, 387–394, https://doi.org/10.5194/aab-61-387-2018, https://doi.org/10.5194/aab-61-387-2018, 2018
Short summary
Short summary
Identification issues in livestock can be resolved by molecular identification tools that preserve and maintain pure breeds worldwide. In this study, 50 and 48 unrelated Cholistani and crossbred males, respectively, were sampled. Candidate genetic markers present in Cholistani but absent in crossbred and vice versa were detected using the amplified fragment length polymorphism (AFLP) method. This study generated molecular breed-specific markers to identify the purity of the Cholistani breed.
M. Maaouia A. Moussa, Moumouni Issa, Amadou Traoré, Moustapha Grema, Marichatou Hamani, Iván Fernández, Albert Soudré, Isabel Álvarez, Moumouni Sanou, Hamidou H. Tamboura, Yenikoye Alhassane, and Félix Goyache
Arch. Anim. Breed., 60, 363–371, https://doi.org/10.5194/aab-60-363-2017, https://doi.org/10.5194/aab-60-363-2017, 2017
Short summary
Short summary
The long-horned Fulani zebu, spread all over the Sahel area, is one of the main cattle groups in Africa. Despite their importance, characterisation of these cattle is poorly developed. The current research illustrated a lack of differentiation among local populations of this cattle group at the body measurements level. Conservation or selection initiatives could be implemented at a cross-boundary level.
Amadou Traoré, Delphin O. Koudandé, Iván Fernández, Albert Soudré, Isabel Álvarez, Siaka Diarra, Fousseyni Diarra, Adama Kaboré, Moumouni Sanou, Hamidou H. Tamboura, and Félix Goyache
Arch. Anim. Breed., 59, 337–344, https://doi.org/10.5194/aab-59-337-2016, https://doi.org/10.5194/aab-59-337-2016, 2016
Short summary
Short summary
Body traits (16 body measurements and 18 qualitative traits) have been analysed in 183 adult sires belonging to nine West African cattle breeds via multifactorial methods to ascertain breeding preferences of African farmers. No clear patterns of homogenisation of the appearance of individuals within cattle breed could be assessed. Since no selection programmes exist and unsupervised matings are the rule, differentiation among African livestock breeds cannot be assessed in European terms.
Cited articles
Alvarez, I., Traore, A., Fernández, I., Cuervo, M., Lecomte, T., Soudre, A., Kabore, A., Tamboura, H., and Goyache, F.: Assessing introgression of Sahelian zebu genes into native Bos taurus breeds in Burkina Faso, Mol. Biol. Rep., 41, 3745–3754, 2014.
Antao, T., Lopes, A., Lopes, R. J., Beja-Pereira, A., and Luikart, G.: LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method, BMC Bioinformatics, 9, 323, 2008.
Apaa-Okello, J., Barry, M., Gueye, C. A., Jack, J., Marchettini, D., Nose, M., Bin Li, G., and Wang, H.: IMF Country Report No. 15/64, International Monetary Fund, Washington DC, available at: https://www.imf.org/external/pubs/ft/scr/2015/cr1564.pdf (last access: 15 February 2017), 2015.
Arranz, J. J., Bayón, Y., and San Primitivo, F.: Differentiation among Spanish sheep breeds using microsatellites, Genet. Sel. Evol., 33, 529–542, 2001.
Baudouin, L. and Lebrun, P.: An operational Bayesian approach for the identification of sexually reproduced cross-fertilized populations using molecular markers, Acta Hortic., 546, 81–93, 2001.
Bessa, I., Pinheiro, I., Matola, M., Dzama, K., Rocha, A., and Alexandrino, P.: Genetic diversity and relationships among indigenous Mozambican cattle breeds, S. Afr. J. Anim. Sci., 39, 61–72, 2009.
Blench, C.: Ethno-graphic and linguistic evidence for the prehistory of African ruminant livestock, horses and ponies, in: The Archaeology of Africa: Food, Metals and Towns, edited by: Shaw, T., Sinclair, P., Andah, B., and Okpoko, A., Routledge, London, 71–103, 1993.
Clutton-Brock, J.: Cattle in Ancient North Africa, in: The Walking Larder Patterns of Domestication, Pastoralism, and Predation, edited by: Clutton-Brock, J., 200–214, Unwin-Hyman Ltd, London, 1989.
Cornuet, J. M., Piry, S., Luikart, G., Estoup, A., and Solignac, M.: New methods employing multilocus genotypes to select or exclude populations as origins of individuals, Genetics, 153, 1989–2000, 1999.
Dadi, H., Tibbo, M., Takahashi, Y., Nomura, K., Hanada, H., and Amano, T.: Microsatellite analysis reveals high genetic diversity but low genetic structure in Ethiopian indigenous cattle populations, Anim. Genet., 39, 425–431, 2008.
Dieringer, D. and Schlotterer, C.: MICROSATELLITE ANALYZER (MSA): a platform independent analysis tool for large microsatellite data sets, Mol. Ecol. Notes, 3, 167–169, 2003.
Egito, A. A., Paiva, S. R., Albuquerque, M. S. M., Mariante, A. S., Almeida, L. D., Castro, S. R., and Grattapaglia, D.: Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil, BMC Genetics, 8, 83, https://doi.org/10.1186/1471-2156-8-83, 2007.
Epstein, H. and Mason, I. L.: Cattle, in: Evolution of Domesticated Animals, edited by: Mason, I. L., 6–27, Longman, New York, 1984.
FAO: Molecular genetic characterization of animal genetic resources, FAO Animal Production and Health Guidelines, No. 9, Rome, 2011.
FAOSTAT: Live Animals, available at: http://faostat.fao.org/site/573/DesktopDefault.aspx?#ancor (last access: 13 February 2017), 2014.
Felsenstein, J.: PHYLIP: Phylogeny inference package, version 3.5. Department of Genetics, Washington University, Seattle, Washington, 1993.
Freeman, A. R, Meghen, C. M., MacHugh, D. E., Loftus, R. T., Achukwi, M. D., Bado, A., Sauveroche, B., and Bradley, D. G.: Admixture and diversity in West African cattle populations, Mol. Ecol., 13, 3477–3487, 2004.
Ganapathi, P., Rajendran, R., and Kathiravan, P.: Detection of occurrence of a recent genetic bottleneck event in Indian hill cattle breed Bargur using microsatellite markers, Trop. Anim. Health Pro., 44, 2007–2013, 2012.
Goudet, J.: FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3), available at: http://www2.unil.ch/popgen/softwares/fstat.htm (last access: 7 February 2017), 2001.
Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., and Rege, J. E. O.: African pastoralism: genetic imprints of origins and migrations, Science, 296, 336–339, 2002.
Hussein, I. H., Alam, S. S., Makkawi, A. A. A., Sid-Ahmed, S. E. A., Abdoon, A. S., and Hassanane, M. S.: Genetic Diversity Between and Within Sudanese Zebu Cattle Breeds Using Microsatellite Markers, Research in Genetics, 2015, 135483, https://doi.org/10.5171/2015.135483, 2015.
Ibeagha-Awemu, E. M., Jann, O. C., Weimann, C., and Erhardt, G.: Genetic diversity, introgression and relationships among West/Central African cattle breeds, Genet. Sel. Evol., 36, 673–90, 2004.
Kataria, R. S., Kathiravan, P., Bulandi, S. S., Pandey, D., and Mishra, B. P.: Microsatellite based genetic monitoring to detect cryptic demographic bottleneck in Indian riverine buffaloes (Bubalus bubalis), Trop. Anim. Health Pro., 42, 849–855, 2010.
Legaz, E., Álvarezb, I., Royo, L. J., Fernández, I., Gutiérrez, J. P., and Goyache, F.: Genetic relationships between Spanish Assaf (Assaf.E) and Spanish native dairy sheep breeds, Small Ruminant Res., 80, 39–44, 2008.
Manel, S., Gaggiotti, O. E., and Waples, R. S.: Assignment methods: Matching biological questions with appropriate techniques, Trends Ecol. Evol., 20, 136–142, 2005.
Meghen, C., MacHugh, D. E., and Sauveroche, B.: Characterisation of the Kuri cattle of Lake Chad using molecular genetic techniques, in: Origin and development of African livestock, edited by: Blench, R. M. and MacDonald, K. C., UCL Press, London, UK, 259–268, 2000.
Ndiaye, N. P., Sow, A., Dayo, G. K., Ndiaye, S., Sawadogo, G. J., and Sembène, M.: Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers, Veterinary World, 8, 994–1005, 2015.
Ngono Ema, P. J., Manjeli, Y., Meutchieyié, F., Keambou, C., Wanjala, B., Desta, A. F., Ommeh, S., Skilton, R., and Djikeng, A.: Genetic diversity of four Cameroonian indigenous cattle using microsatellite markers, Journal of Livestock Science, 5, 9–17, 2014.
Okomo-Adhiambo, M.: Characterization of genetic diversity in indigenous cattle of East Africa: Use of microsatellite DNA techniques, ILRI, Nairobi, Kenya, available at: http://agtr.ilri.cgiar.org/index.php?option=com_content&task=view&id=84&Itemid=101 (last access: 2 February 2017), 2002.
Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M., and Shipley, P.: MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Notes, 4, 535–538, 2004.
Paetkau, D., Calvert, W., Sterling, I., and Strobeck, C.: Microsatellite analysis of population structure in Canadian polar bears, Mol. Ecol., 4, 347–354, 1995.
Payne, W. J. A. and Wilson, T. R.: An Introduction to Animal Husbandry in the Tropics, 5th edn., Blackwell Science Ltd, Oxford, 1999.
Peakall, R. and Smouse, P. E.: GenAlEx 6.5: genetic analysis in Excel, Population genetic software for teaching and research-an update, Bioinformatics, 28, 2537–2539, 2012.
Piry, S., Luikart, G., and Cornuet, J. M.: BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data, J. Hered., 90, 502–503, 1999.
Piry, S., Alapetite, A., Cornuet, J. M., Paetkau, D., Baudouin, L., and Estoup, A.: GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection, J. Hered., 95, 536–539, 2004.
Rannala, B. and Mountain, J. L.: Detecting immigration by using multilocus genotypes, P. Natl. Acad. Sci. USA, 94, 9197–9201, 1997.
Raymond, M. and Rousset, F.: GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism, J. Hered., 86, 248–249, 1995.
Shama, L. N. S., Kubow, K. B., Jokela, J., and Robinson, C. T.: Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly meta populations, BMC Evolutionary Biology, 11, 278–288, 2011.
Sharma, R., Kishore, A., Mukesh, M., Ahlawat, S., Maitra, A., Pandey, A. K., and Tantia, M. S.: Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers, BMC Genetics, 16, 73, https://doi.org/10.1186/s12863-015-0221-0, 2015.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S.: MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol. Evol., 30, 2725–2729, 2013.
Waples, R. S.: Testing for Hardy–Weinberg proportions: Have we lost the plot?, J. Hered., 106, 1–19, 2015.
World Bank: Livestock in Niger: an important asset for growth and poverty reduction, Livestock Data Innovation in Africa Brief, 86400, 1–2, http://documents.worldbank.org/curated/en/487081468292522854/pdf/864000BRI020120Box0385180B00PUBLIC0.pdf (last access: 13 February 2017), 2012.
Wright, S.: The genetical structure of populations, Ann. Eugenic., 15, 323–354, 1951.
Short summary
The present study aimed at characterizing genetic diversity and relationship of 3 Niger cattle breeds (Zebu Arabe, Zebu Bororo and Kuri). High levels of allelic and gene diversity were observed while genetic differentiation was low. High genetic diversity and poor genetic structure might be due to historic zebu–taurine admixture and ongoing breeding practices in the region. The result of this study will help formulate effective strategies for conservation and improvement of Niger cattle breeds.
The present study aimed at characterizing genetic diversity and relationship of 3 Niger cattle...