Baker, D. H.: Ideal Amino Acid Patterns for Broiler Chicks, in: Amino Acids in Animal Nutrition, 2nd Edn., edited by: D'Mello, J. P. F., CAB International, Wallingford, Oxon, UK, 223–235, 2003.
Batterham, E. S., Andersen, L. M., Baigent, D. R., Beech, S. A., and Elliot, R.: Utilization of ileal digestible amino acids by pigs: lysine, Br. J. Nutr., 64, 679–690, 1990.
Bender, A. E. and Miller, D. S.: Constancy of the N ∕ H
20 ratio of the rat and its use in the determination of the net protein value, Biochem. J., 53, vii–viii, 1953b.
Bergner, H.: Ermittlung der Eiweißqualität von Nahrungs- und Futtermitteln, Arch. Anim. Nutr., 45, 293–332, 1994.
Bock, H.-D.: Methoden zur Beurteilung der Proteinqualität von Nahrungs- und Futtermitteln, Fortschrittsberichte für die Landwirtschaft und Nahrungsgüterwirtschaft, 13, 1–67, 1975.
Boisen, S.: In vitro digestibility methods: history and specific approaches, in: New developments in feed evaluation, edited by: Moughan, P. J., Verstegen, M. W. A., and Visscher, M., CABI, Wageningen, 153–168, 2000.
Booth, V. H.: Problems in the determination of FDNB-available lysine, J. Sci. Food Agric., 22, 658–666, 1971.
Brede, A., Neumann, C., Velten, S., and Liebert, F.: Evaluation of
Hermetia illucens and
Spirulina platensis proteins in semisynthetic diets for the laboratory rat, Proc. Soc. Nutr. Physiol., 25, 31, 2016.
Carpenter, K. J.: The estimation of the available lysine in animal-protein foods, Biochem. J., 77, 604–610, 1960.
Carpenter, K. J.: Damage to lysine in food processing: its measurement and its significance, Nutr. Abstr. Rev., 43, 424–451, 1973.
Cole, D. J. A., Yen, H. T., and Lewis, D.: The Lysine Requirements of Growing and Finishing Pigs – The Concept of an Ideal Protein, in: Proceedings of the 3rd International Symposium on Protein Metabolism and Nutrition, Vol. II, edited by: Oslage, H. J. and Rohr, K., EAAP, Braunschweig, Germany, 658–668, 1980.
Dänicke, S. und Liebert, F.: Modellierung des Wachstums und der N-Ausscheidung wachsender Masthähnchen aufder Grundlage des Konzeptes wirksamer Aminosäure, Proc. Int. Tagung Schweine- und Geflügelernährung, Halle, 17–24, 1992.
Dean, W. F. and Scott, H. M.: The Development of an Amino Acid Reference Diet for the Early Growth of Chicks, Poult. Sci., 44, 803–808, 1965.
Dietz, C. and Liebert, F.: Insect protein in aquafeed – effect of substituting soy protein on protein quality of Tilapia feed, Proc. Soc. Nutr. Physiol., 26, 147, 2017.
Dietz, C., Liebert, F. and Winter, B.: Protein hydrolysates from animal by-products as sustainable protein source. I: Effect of thermal hydrolysis and origin of basic material on protein quality, Proc. Soc. Nutr. Physiol., 25, 124, 2016.
Dorigam, J., Sakomura, N., and Liebert, F.: Modelling of lysine requirement in broiler breeder hens based on daily nitrogen retention and efficiency of dietary lysine utilization, Anim. Feed Sci. Technol., 226, 29–38, 2017.
Eggum, B. O. and Christensen, K. D.: Protein digestibility of a feed mixture in relation to the protein digestibility of individual protein components, Br. J. Nutr., 31, 213–218, 1974.
Evonik: AMINODat
® 5.0 – Animal nutritionist's information edge, in: book I and II, Evonik Nutrition & Care GmbH, Hanau, Wolfgang, 2016.
Farke, J.: Studien zur Aminosäurenwirksamkeit beim Mastgeflügel unter spezifischer Betrachtung der schwefelhaltigen Aminosäuren, Diss. Univ. Göttingen, 199 pp., http://webdoc.sub.gwdg.de/diss/2011/farke/farke.pdf (last access: Augst 2017), 2011.
Finot, P. A., Bujard, E., and Arnaud, M.: in: Protein cross-linking – Nutritional and medical consequences, edited by: Friedman, M., Plenum Press, New York, London, 51–71, 1977.
Fuller, M.: AA bioavailability – A brief history, in: Vol. 1, Proc. 9th Int. Symp. on Digestive Physiology in Pigs, edited by: Ball, R. O., Univ. Alberta, Canada, 183–198, 2003.
Fuller, M.: Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis, Br. J. Nutr., 108, S238–S248, 2012.
Galibois, I., Savoie, L., Simoes Nunes, C., and Rerat, A.: Relation between in vitro and in vivo assessment of amino acid availability, Reprod. Nutr. Dev., 29, 495–507, 1989.
Gebhardt, G.: Die Bewertung der Eiweißqualität von Nahrungs- und Futtermitteln mit Hilfe des N-Bilanzversuches, in: Vergleichende Ernährungslehre des Menschen und seiner Haustiere, edited by: Hock, A., Fischer Verl., Jena, 323–348, 1966.
Gebhardt, G.: Parameter des N-Stoffwechsels und Wachstumsgesetzmäßigkeiten, Math.-Nat. wiss. R. 22, Wiss. Z. Karl-Marx-Universität Leipzig, Leipzig, 201–213, 1973.
Gebhardt, G. and Brune, H.: 12. Tagung der Gesellschaft für Ernährungsphysiologie der Haustiere, Arbeitskreis für Eiweißbewertung, Z. Tierphysiol. Tierernähr. Futtermittelkd., 15, 308–320, 1960.
Gous, R. M. and Morris, T. R.: Evaluation of a diet dilution technique for measuring the response of broiler chickens to increasing concentrations of lysine, Br. Poult. Sci., 26, 147–161, 1985.
Hackler, L. R.: Methods of measuring protein quality: A review of bioassay procedures, Cereal Chem., 54, 984–995, 1977.
Htoo, J. K. and Morales, J.: Bioavailability of l-methionine relative to dl-methionine as a methionine source for weaned pigs, J. Anim. Sci., 94, 249–252, 2016.
Huang, R.-L., Tan, Z.-L., Xing, T.-X., Pan, Y.-F., and Li, T.-J.: An in vitro method for the estimation of ileal crude protein and amino acid digestibility using the dialysis tubing for pig feedstuffs, Anim. Feed Sci. Technol., 88, 79–89, 2000.
Khan, D. R., Wecke, C., Sharifi, A. R., and Liebert, F.: Evaluating the age dependent potential for protein deposition in naked neck meat type chicken, Animals, 5, 56–70, 2015.
Kluth, H. and Rodehutscord, M.: Comparison of amino acid digestibility in broiler chickens, turkeys and Pekin ducks, Poult. Sci., 85, 1953–1960, 2006.
Kluth, H. and Rodehutscord, M.: Standardisierte Futterbewertung auf der Basis der Aminosäurenverdaulichkeit beim Geflügel, Übers. Tierernährg., 37, 1–26, 2009.
Liebert, F.: Methodische Untersuchungen zur Beurteilung von Lysinverwertungskennzahlen von Schweinen nach extremen Veränderungen von Proteinmenge und -zusammensetzung, Arch. Anim. Nutr., 48, 319–327, 1995.
Liebert, F.: Level of protein deposition and N-excretion : N-deposition ratio in the growing pig and chicken, in: Proc. 7th Int. Symp. Protein metabolism and nutrition, EAAP publ. no. 81, edited by: Nunes, A. F., Portugal, A. V., Costa, J. P., and Ribeiro, J. R., Santarèm, Portugal, p. 397, 1996.
Liebert, F.: Modelling of protein metabolism yields amino acid requirements dependent on dietary amino acid efficiency, growth response, genotype and age of growing chicken, Avian Biol. Res., 1, 101–110, 2008.
Liebert, F.: Amino acid requirement studies in
Orechromis niloticus by application of principles of the diet dilution technique, J. Anim. Physiol. Anim. Nutr., 93, 787–793, 2009.
Liebert, F.: Basics and applications of an exponential nitrogen utilization model (“Goettingen approach”) for assessing amino acid requirements in growing pigs and meat type chickens based on dietary amino acid efficiency, in: Nutritional Modelling for Pigs and Poultry, edited by: Sakomura, N. K., Gous, R. M., Kyriasakis, I., and Hauschild, L., CABI Publishing, Wallingford, 73–87, 2015.
Liebert, F. and Benkendorff, K.: Modeling lysine requirements of
Oreochromis niloticus due to principles of the diet dilution technique, Aquaculture, 267, 100–110, 2007a.
Liebert, F. and Benkendorff, K.: Modelling of threonine and methionine requirements of
Oreochromis niloticus due to principles of the diet dilution technique, Aquacult. Nutr., 13, 397–406, 2007b.
Liebert, F. and Gebhardt, G.: Ergebnisse zur Wirksamkeit und zum Bedarf an ausgewählten Aminosäuren beim wachsenden weiblichen Schwein. 6. Mitt.: Zusammenfassende Diskussion und Wertung sowie Anwendungsempfehlungen zur vorgestellten Methode, Arch. Anim. Nutr., 38, 453–462, 1988.
Liebert, F. and Wecke, C.: Models for further developing the evaluation of protein and amino acids as well as for predicting performance from energy and amino acids intake, in: Recommendations for the Supply of Energy and Nutrients to Pigs, edited by: Staudacher, W., DLG-Verlag, Frankfurt am Main, 219–230, 2008.
Liebert, F. and Wecke, C.: Nitrogen losses per unit of nitrogen deposition as derived from modelling of protein utilization depending on dietary protein quality parameters and age of growing barrows, in: Proc. 3rd Int. Symp. on Energy and Protein Metabolism and Nutrition, Parma, Italy, EAAP publ. no. 127, edited by: Matteo Crovetto, G., Acadademic Publishers, Wageningen, 443–444, 2010.
Liebert, F. und Wecke, C.: Zur Modellierung von N-Stoffwechselparametern als Basis für die Bewertung der Nachhaltigkeit von Ausschöpfungsstrategien für Wachstumspotenziale bei Masthähnchen und Mastschweinen, VDLUFA-Schriftenreihe 68, VDLUFA-Verlag Darmstadt, 749–755, 2012.
Liebert, F., Le Khac, H., and Gebhardt, G.: Ergebnisse zur Wirksamkeit und zum Bedarf an ausgewählten Aminosäuren beim wachsenden weiblichen Schwein. 4. Mitt.: Kombinationen von Proteinträgern mit Lysin-, Methionin/Zystin- bzw. Threoninlimitanz. Arch. Anim. Nutr., 37, 559–568, 1987.
Liebert, F., Sünder, A., and Mohamed, K.: Assessment of nitrogen maintenance requirement and potential for protein deposition in juvenile Tilapia genotypes by application of an exponential nitrogen utilization model, Aquaculture, 261, 1346–1355, 2006.
Liebert, F., Wecke, C., and Sünder, A.: Besteht Korrekturbedarf bei der optimalen Versorgung von Masthähnchen mit schwefelhaltigen Aminosäuren? (Invited review), in: Proc. 13. Tag. Schweine- und Geflügelernährung, Wittenberg, 32–39, 2015.
Lintzel, W.: Über einige neue Gesichtspunkte und Möglichkeiten der Erforschung des Eiweißstoffwechsels der landwirtschaftlichen Nutztiere, Z. Tierernähr. Futtermittelkd., 2, 32–44, 1939.
Lintzel, W.: Über den Nährwert des Eiweißes der Speisepilze, Biochem. Z., 308, 413–419, 1941.
Lintzel, W. and Rechenberger, J.: Experimentelle Studien zur Theorie des Eiweißstoffwechsels. III. Mitt. Die eiweißsparende Wirkung unvollständiger Eiweiße (Zein und Gelatine) beim Menschen, Biochem. Z., 304, 214–222, 1940.
Low, A. G.: Nutrient absorption in pigs, J. Sci. Food Agric., 31, 1087–1130, 1980.
Maillard, L. C.: Action of amino acids on sugars. Formation of melanoidins in a methodical way, Compt. Rend., 154, 66–68, 1912.
Marquardt, D. W.: An algorithm for least squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 431–441, 1963.
Mitchell, H. H.: A method of determining the biological value of protein, J. Biol. Chem., 58, 873–903, 1924.
Mitchell, H. H. and Carman, G. G.: The biological value for maintenance and growth of the proteins of whole wheat, eggs, and pork, J. Biol. Chem., 60, 613–620, 1924.
Neumann, C., Velten, S., Kubitza, D., and Liebert, F.: Protein quality of chicken diets with complete substitution of soybean meal by insect meal (
Hermetia illucens) or algae meal (
Spirulina platensis) and graded fortification of dietary amino acid supply, Proc. Soc. Nutr. Physiol., 26, 79, 2017.
Nörenberg, P.: Untersuchungen zum maximalen Stickstoffretentionsvermögen wachsender weiblicher Schweine, Diss. Univ. Leipzig, Leipzig, 1987.
Oser, B. L.: Method of Integrating Essential Amino Acid Content in the Nutritional Evaluation of Protein, J. Am. Diet. Assoc., 27, 396–402, 1951.
Pastor, A.: Aminosäurenwirksamkeit beim Mastgeflügel unter spezifischer Betrachtung der verzweigtkettigen Aminosäuren, Diss. Univ. Göttingen, 321 pp., http://hdl.handle.net/11858/00-1735-0000-0022-5E64F (last access: August 2017), 2014.
Pastor, A., Wecke, C., and Liebert, F.: Assessing the age dependent optimal dietary branched-chain amino acid ratio in growing chicken by application of a non-linear modeling procedure, Poult. Sci., 92, 3184–3195, 2013.
Peres, H. and Olivia-Teles, A.: The effect of dietary protein replacement by crystalline amino acid on growth and nitrogen utilization of turbot
Scophthalmus maximus juveniles, Aquaculture, 250, 755–764, 2005.
Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., and Parisi, G.: Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (
Sparus aurata), Anim. Feed Sci. Technol., 226, 12–20, 2017.
Ravindran, V., Adeola, O., Rodehutscord, M., Kluth, H., van der Klis, J. D., van Eerden, E., and Helmbrecht, A.: Determination of ileal digestibility of amino acids in raw materials for broiler chickens – Results of collaborative studies and assay recommendations, Anim. Feed Sci. Technol., 225, 62–72, 2017.
Rutherford, M. S. and Moughan, P. J.: The rat as a model animal for the growing pig in determining ileal amino acid digestibility in soya and milk proteins, J. Anim. Physiol. Anim. Nutr., 87, 292–300, 2003.
Samadi and Liebert, F.: Modelling of threonine requirement in fast growing chickens depending on age, sex, protein deposition and dietary threonine efficiency, Poult. Sci., 85, 1961–1968, 2006a.
Samadi and Liebert, F.: Estimation of nitrogen maintenance requirements and potential for nitrogen deposition in fast-growing chickens depending on age and sex, Poult. Sci., 85, 1421–1429, 2006b.
Samadi and Liebert, F.: Threonine requirement of slow-growing male chickens depends on age and dietary efficiency of threonine utilization, Poult. Sci., 86, 1140–1148, 2007a.
Samadi and Liebert, F.: Lysine requirement of fast growing chickens – Effects of age, sex, level of protein deposition and dietary lysine efficiency, J. Poult. Sci., 44, 63–72, 2007b.
Samadi and Liebert, F.: Modelling the optimal lysine to threonine ratio in growing chickens depending on age and efficiency of dietary amino acid utilisation, Br. Poult. Sci., 49, 45–54, 2008.
Samadi, Wecke, C., Pastor, A., and Liebert, F.: Assessing lysine requirement of growing chicken by direct comparison between supplementation technique and “Goettingen approach”, Open J. Anim. Sci., 7, 56–69, 2017.
Sauer, W. C. and Ozimek, L.: Digestibility of amino acids in swine: Results and their practical applications. A review, Livest. Prod. Sci., 15, 367–388, 1986.
Slawski, H., Adem, H., Tressel, R.-P., Wysujack, K., Koops, U., Wuertz, S., and Schulz, C.: Replacement of fishmeal with rapeseed protein concentrate in diets fed to wels catfish (
Silurus glanis L.), Aquacult. Nutr., 17, 605–612, 2011.
Stein, H. H., Pedersen, C., Wirt, A. R., and Bohlke, R. A.: Additivity of values for apparent and standardized ileal digestibility of AA in mixed diets fed to growing pigs, J. Anim. Sci., 83, 2387–2395, 2005.
Stein, H. H., Seve, B., Fuller, M. F., Moughan, P. J. and de Lange, C. F. M.: Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application, J. Anim. Sci., 85, 172–180, 2007.
Thong, H. T. and Liebert, F.: Potential for protein deposition and threonine requirement of modern genotype barrows fed graded levels of protein threonine as the limiting amino acid, J. Anim. Physiol. Anim. Nutr., 88, 196–203, 2004a.
Thong, H. T. and Liebert, F.: Amino acid requirement of growing pigs depending on efficiency of amino acid utilisation and level of protein deposition. 1. Lysine, Arch. Anim. Nutr., 58, 69–88, 2004b.
Thong, H. T. and Liebert, F.: Amino acid requirement of growing pigs depending on efficiency of amino acid utilisation and level of protein deposition. 2. Threonine, Arch. Anim. Nutr., 58, 157–168, 2004c.
Van Kempen, T. and Bodin, J.: Near-infrared reflectance spectroscopy (NIRS) appears to be superior to nitrogen-based regression as a rapid tool in predicting the poultry digestible amino acid content of commonly used feedstuffs, Anim. Feed Sci. Technol., 76, 139–147, 1998.
Van Leeuwen, P., Sauer, W. C., Huisman, J., van Weerden, E. J., van Kleef, D., and den Hartog, L. A.: Methodological aspects for the determination of amino acid digestibilities in pigs fitted with ileocecal re-entrant cannulas, J. Anim. Physiol. Anim. Nutr., 58, 122–133, 1987.
von Bertalanffy, L.: Theoretische Biologie, in: 2. Bd., Stoffwechsel, Wachstum, A. Francke AG Verlag, Bern, 1951.
Wecke, C. and Liebert, F.: Lysine requirement studies in modern genotype barrows dependent on age, protein deposition and dietary lysine efficiency, J. Anim. Physiol. Anim. Nutr., 93, 295–304, 2009.
Wecke, C. and Liebert, F.: Optimal dietary lysine to threonine ratio in pigs (30–110 kg BW) derived from observed dietary amino acid efficiency, J. Anim. Physiol. Anim. Nutr., 94, E277–E285, 2010.
Wecke, C. and Liebert, F.: Improving the reliability of optimal in-feed amino acid ratios based on individual amino acid efficiency data from N balance studies in growing chicken, Animals, 3, 558–573, 2013.
Wecke, C., Pastor, A., and Liebert, F.: Validation of the lysine requirement as reference amino acid for ideal in-feed amino acid ratios in modern fast growing meat-type chickens, Open J. Anim. Sci., 6, 185–194, 2016.