Articles | Volume 60, issue 2
https://doi.org/10.5194/aab-60-153-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/aab-60-153-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Genetic diversity in Tunisian horse breeds
Laboratoire d'Amélioration et de Développement Intégré de la Productivité Animale et des Ressources Alimentaires, Ecole Supérieure d'Agriculture de Mateur, Université de Carthage, Carthage, Tunisia
Mohamed Mezir Haddad
Fondation Nationale d'Amélioration de la Race Chevaline, Sidi Thabet, Tunisia
Nawel Barhoumi
Laboratoire d'Amélioration et de Développement Intégré de la Productivité Animale et des Ressources Alimentaires, Ecole Supérieure d'Agriculture de Mateur, Université de Carthage, Carthage, Tunisia
Syrine Tounsi
Laboratoire d'Amélioration et de Développement Intégré de la Productivité Animale et des Ressources Alimentaires, Ecole Supérieure d'Agriculture de Mateur, Université de Carthage, Carthage, Tunisia
Faten Lasfer
Fondation Nationale d'Amélioration de la Race Chevaline, Sidi Thabet, Tunisia
Amira Trabelsi
Laboratoire d'Analyse Génétique Animale, Institut de la Recherche Vétérinaire de Tunisie, Tunis, Tunisia
Belgacem Ben Aoun
Fondation Nationale d'Amélioration de la Race Chevaline, Sidi Thabet, Tunisia
Imen Gritli
Laboratoire d'Analyse Génétique Animale, Institut de la Recherche Vétérinaire de Tunisie, Tunis, Tunisia
Soufiene Ezzar
Fondation Nationale d'Amélioration de la Race Chevaline, Sidi Thabet, Tunisia
Abdelhak Ben Younes
Laboratoire d'Analyse Génétique Animale, Institut de la Recherche Vétérinaire de Tunisie, Tunis, Tunisia
Mohamed Habib Ezzaouia
Fondation Nationale d'Amélioration de la Race Chevaline, Sidi Thabet, Tunisia
Boulbaba Rekik
Laboratoire d'Amélioration et de Développement Intégré de la Productivité Animale et des Ressources Alimentaires, Ecole Supérieure d'Agriculture de Mateur, Université de Carthage, Carthage, Tunisia
Hatem Ouled Ahmed
Laboratoire d'Analyse Génétique Animale, Institut de la Recherche Vétérinaire de Tunisie, Tunis, Tunisia
Related authors
Safa Bejaoui, Nour Elhouda Fehri, Mohamed Amine Ferchichi, and Bayrem Jemmali
Arch. Anim. Breed., 67, 515–521, https://doi.org/10.5194/aab-67-515-2024, https://doi.org/10.5194/aab-67-515-2024, 2024
Short summary
Short summary
Genetic variation in the SLC11A1 (C>G) and CARD15 (A/G) genes may contribute to the onset and development of bovine tuberculosis (bTB), supporting the hypothesis that polymorphisms in these genes are associated with the risk of bTB in Holstein cattle. bTB is a complicated disease that is probably influenced by polymorphisms in many genes, particularly those related to the immune system and host–pathogen interactions.
Sihem Amiri, Bayrem Jemmali, Mohamed Amine Ferchichi, Hajer Jeljeli, Rekik Boulbaba, and Abderrahmane Ben Gara
Arch. Anim. Breed., 61, 481–489, https://doi.org/10.5194/aab-61-481-2018, https://doi.org/10.5194/aab-61-481-2018, 2018
Short summary
Short summary
Genetic polymorphims in the growth hormone (GH) gene were studied in 410 Holstein dairy cows. Genotyping was carried out using PCR-RFLP. Data were analyzed by the MIXED procedure to reveal the effect of GH genotypes on reproductive traits. GH-AluI had a favorable effect on exanimate traits except for the age at the first calving. The homozygous LL genotype seemed to be advantageous for calving interval and days open. A significant effect of different GH-AluI–MspI combined genotypes was found.
Mohamed Amine Ferchichi, Bayrem Jemmali, Sihem Amiri, Abderrahmane Ben Gara, and Boulbaba Rekik
Arch. Anim. Breed., 61, 305–310, https://doi.org/10.5194/aab-61-305-2018, https://doi.org/10.5194/aab-61-305-2018, 2018
Short summary
Short summary
This study aims to investigate the screening of leptin genetic polymorphism and its effect on lameness prevalence. Prevalence of lameness was evaluated and results showed that genotypes and other factors included in the logistic regression model significantly affect the prevalence of lameness in Holstein cows (P < 0.01). The probability of lameness incidence varied between 37 % and 99 % with parity. This recorded incidence is greater in winter and autumn than in the summer and spring.
Hafedh Ben Zaabza, Abderrahmen Ben Gara, Hedi Hammami, Borni Jemmali, Mohamed Amine Ferchichi, and Boulbaba Rekik
Arch. Anim. Breed., 59, 209–213, https://doi.org/10.5194/aab-59-209-2016, https://doi.org/10.5194/aab-59-209-2016, 2016
Short summary
Short summary
Genetic parameters for 11 456 Tunisian Holstein cows were estimated for the following five reproductive traits: calving interval (CI), calving to first service interval, calving to conception interval (CCI), first service to conception interval and number of services per conception. Low heritabilities were estimated for these traits, and genetic correlation estimates between them were moderately high. The CCI–CI genetic correlation was 0.85, indicating that they are the same trait genetically.
Safa Bejaoui, Nour Elhouda Fehri, Mohamed Amine Ferchichi, and Bayrem Jemmali
Arch. Anim. Breed., 67, 515–521, https://doi.org/10.5194/aab-67-515-2024, https://doi.org/10.5194/aab-67-515-2024, 2024
Short summary
Short summary
Genetic variation in the SLC11A1 (C>G) and CARD15 (A/G) genes may contribute to the onset and development of bovine tuberculosis (bTB), supporting the hypothesis that polymorphisms in these genes are associated with the risk of bTB in Holstein cattle. bTB is a complicated disease that is probably influenced by polymorphisms in many genes, particularly those related to the immune system and host–pathogen interactions.
Sihem Amiri, Bayrem Jemmali, Mohamed Amine Ferchichi, Hajer Jeljeli, Rekik Boulbaba, and Abderrahmane Ben Gara
Arch. Anim. Breed., 61, 481–489, https://doi.org/10.5194/aab-61-481-2018, https://doi.org/10.5194/aab-61-481-2018, 2018
Short summary
Short summary
Genetic polymorphims in the growth hormone (GH) gene were studied in 410 Holstein dairy cows. Genotyping was carried out using PCR-RFLP. Data were analyzed by the MIXED procedure to reveal the effect of GH genotypes on reproductive traits. GH-AluI had a favorable effect on exanimate traits except for the age at the first calving. The homozygous LL genotype seemed to be advantageous for calving interval and days open. A significant effect of different GH-AluI–MspI combined genotypes was found.
Mohamed Amine Ferchichi, Bayrem Jemmali, Sihem Amiri, Abderrahmane Ben Gara, and Boulbaba Rekik
Arch. Anim. Breed., 61, 305–310, https://doi.org/10.5194/aab-61-305-2018, https://doi.org/10.5194/aab-61-305-2018, 2018
Short summary
Short summary
This study aims to investigate the screening of leptin genetic polymorphism and its effect on lameness prevalence. Prevalence of lameness was evaluated and results showed that genotypes and other factors included in the logistic regression model significantly affect the prevalence of lameness in Holstein cows (P < 0.01). The probability of lameness incidence varied between 37 % and 99 % with parity. This recorded incidence is greater in winter and autumn than in the summer and spring.
Hafedh Ben Zaabza, Abderrahmen Ben Gara, Hedi Hammami, Mohamed Amine Ferchichi, and Boulbaba Rekik
Arch. Anim. Breed., 59, 243–248, https://doi.org/10.5194/aab-59-243-2016, https://doi.org/10.5194/aab-59-243-2016, 2016
Short summary
Short summary
A Bayesian and REML analyses were used on Tunisian dairy cattle data. Genetic parameters for 305-day milk, fat, and protein yields were estimated. Heritability estimates by using Bayesian method ranged from 0.187 to 0.273, and slightly higher than the corresponding REML. Large genetic correlations (> 0.88) among milk, fat, and protein yields were found for the two methods. This study suggests that results from both methods were reasonably similar to suggest both methods can be used.
Hafedh Ben Zaabza, Abderrahmen Ben Gara, Hedi Hammami, Borni Jemmali, Mohamed Amine Ferchichi, and Boulbaba Rekik
Arch. Anim. Breed., 59, 209–213, https://doi.org/10.5194/aab-59-209-2016, https://doi.org/10.5194/aab-59-209-2016, 2016
Short summary
Short summary
Genetic parameters for 11 456 Tunisian Holstein cows were estimated for the following five reproductive traits: calving interval (CI), calving to first service interval, calving to conception interval (CCI), first service to conception interval and number of services per conception. Low heritabilities were estimated for these traits, and genetic correlation estimates between them were moderately high. The CCI–CI genetic correlation was 0.85, indicating that they are the same trait genetically.
Related subject area
Subject: Biodiversity | Animal: Horses
Diversity and effective population size of four horse breeds from microsatellite DNA markers in South-Central Mexico
José Fernando Vázquez-Armijo, Gaspar Manuel Parra-Bracamonte, Miguel Abraham Velazquez, Ana María Sifuentes-Rincón, José Luis Tinoco-Jaramillo, Pascuala Ambriz-Morales, Williams Arellano-Vera, and Victor Ricardo Moreno-Medina
Arch. Anim. Breed., 60, 137–143, https://doi.org/10.5194/aab-60-137-2017, https://doi.org/10.5194/aab-60-137-2017, 2017
Short summary
Short summary
This study assesses genetic diversity and population structure of Quarter Horse, Azteca, Thoroughbred and Creole horses, frequently used for horse dancing competitions in traditional regional festivities. Since most animals in the studied area are used as breeders, the results support the improvement of management strategies, including periodical assessment of these populations to ensure acceptable population sizes and breed integrity, and documenting genetic flow and reproductive management.
Cited articles
Andrew, R. W., Carla, M. S., Andrew, G. Y., Richard, F., Nicki, J. M., Kim, A. M., Margaret, B., David, J. C., Mark, D. B. E., Paul, S., Martin, F. B., Elizabeth, A. J., and Ary, A. H.: Assessing the benefits and risks of translocations in changing environments: a genetic perspective, Evol. Appl., 4, 709–725, 2011.
Behl, R., Behl, J., Gupta, N., and Gupta, S. C.: Genetic relationships of five Indian horse breeds using microsatellite markers, Animal, 1, 483–488, 2007.
Berber, N., Gaouar, S., Leroy, G., Kdidi, S., Tabet, A. N., and Saıdi Mehtar, N.: Molecular characterization and differentiation of five horse breeds raised in Algeria using polymorphic microsatellite Markers, J. Anim. Breed. Genet., 131, 387–394, 2014.
Binns, M. M., Holmes, N. G., Holliman, A., and Scott, A. M.: The identification of polymorphic microsatellite loci in the horse and their use in thoroughbred parentage testing, Brit. Vet. J., 151, 915, 1995.
Breen, M., Lindgren, G., Binns, M. M., Norman, J., Irvin, Z., Bell, K., Sandberg, K., and Ellegren, H.: Genetical and physical assignments of equine microsatellites. First integration of anchored markers in horse genome mapping, Mamm. Genome, 8, 267–273, 1997.
Canon, J., Checa, M. L., Carleos, C., Vega-Pla, J. L., Vallejo, M., and Dunner, S.: The genetic structure of Spanish Celtic horse breeds inferred from microsatellite data, Anim. Genet., 31, 39–48, 2000.
Druml, T., Curik, I., Baumung, R., Aberle, K., Distl, O., and Sölknet, J.: Individual-based assessment of population structure and admixture in Austrian, Croatian and German draught horses, Heredity, 98, 114–122, 2007.
Eggleston-Stott, M. L., Valle ADBautista, M., Dileanis, S., Wictum, E., and Bowling, A.: Nine equine dinucleotide repeats at microsatellite loci UCDEQ136, UCDEQ405, UCDEQ412, UCDEQ425, UCDEQ437, UCDEQ467, UCDEQ487, UCDEQ502 and UCDEQ505, Anim. Genet., 28, 438–440, 1997.
Ellegren, H., Johansson, M., Sandberg, K., and Andersson, L.: Cloning of highly polymorphic microsatellites in horse, Anim. Genet., 23, 1–9, 1992.
Evanno, G., Regnaut, S., and Goudet, J.: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 14, 2611–2620, 2005.
FAO: Molecular genetic characterization of animal genetic resources, FAO Animal Production and Health Guidelines, No. 9, Rome, 2011.
FNARC: Fondation Nationale d'Amélioration de la Race Chevaline, Rapport d'activité annuel, Sidi Thabet, Tunisie, 2015.
Freeman, A. R., Bradley, D. G., Nagda, S., Gibson, J. P., and Hanotte, O.: Combination of multiple microsatellite data sets to investigate genetic diversity and admixture of domestic cattle, Anim. Genet., 37, 1–9, 2006.
Guérin, G., Bertaud, M., and Amigues, Y.: Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8, Anim. Genet., 25, 62, 1994.
Haddad, M. M.: Caractérisation moleculaire de deux races equines autochtones: Le Barbe et Le Poney des mogods, Thẽse de Doctorat, Bibliothèque INAT, 159 pp., 2015.
Haddad, M. M., Jemmali, B., Bedhiaf, A., Bedhiaf, S., and Djemali, M.: Caractérisation moléculaire des races chevalines autochtones en Tunisie, Journal of new sciences, Agr. Biotechnol., 2, 11–20, 2014.
Jemmali, B., Haddad, M. M., Lasfer, F., Ben Aoun, B., Ezzar, S., Kribi, S., Ouled Ahmed, H., Ezzaouia, M. H., and Rekik, B.: Investigation de la diversité génétique des races Barbe et Arabe Barbe en Tunisie, J. New Sci. Agr. Biotech., 21, 830–838, 2015.
Karima, F. M., Hassanane, M., Abdel, M. M., Heba, I. S., and Nagwa H.: Genetic variations in horse using microsatellite markers, J. Genet. Eng. Biotechnol., 9, 103–109, 2011.
Khanshour, A., Conant, E., Juras, R., and Cothran, E. G.: Microsatellite analysis of genetic diversity and population structure of Arabian horse populations, J. Hered., 104, 386–398, 2013.
Kusza, S., Priskin, K., Ivankovic, A., Jedrzejewska, B., Podgorski, T., Jávor, A., and Mihók, S.: Genetic characterization and population bottleneck in the Hucul horse based on microsatellite and mitochondrial data, Biol. J. Linn. Soc., 54, 54–65, 2013.
Lear, T. L., Brandon, R., and Bell, K.: Physical mapping of ten equine dinucleotide repeat microsatellites, Anim. Genet., 30, 235, https://doi.org/10.1046/j.1365-2052.1999.00404-15.x, 1999.
Lippi, A. S. and Mortari, N.: Studies of blood groups and protein polymorphisms in the Brazilian horse breeds Mangalarga Marchador and Mangalarga (Equuscaballus), Genet. Mol. Biol., 26, 431–434, 2003.
Marklund, S., Ellegren, H., Eriksson, S., Sandberg, K., and Andersson, L.: Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites, Anim. Genet., 25, 19–23, 1994.
Moureaux, S., Ricard, A., Mériaux, J. C., and Verrier, E.: Caractérisation génétique des races françaises de sport et de course et analyse de leur variabilité génétique, 21ème journée de la recherche équine, Les Haras Nationaux, Le Pin-au-Haras, 100–105, 1995.
Nei, M.: Genetic distance between populations, Am. Nat., 106, 283–292, 1972.
Ouragh, L., Meriaux, J. C., and Braun, J. P.: Genetic blood markers in Arabian, Barb and Arab-Barb horses in Mor-occo, Anim. Genet., 25, 45–47, 1994.
Pritchard, J., Stephens, M., and Donnelly, P.: Inference of population structure using multilocus genotype data, Genetics, 155, 945–959, 2000.
Solis, A., Jugo, B. M., Mériaux, J. C., Iriondo, M., Mazón, L. I., Aguirre, A. I., Vicario, A., and Estomba, A.: Genetic diversity within and among four South European native horse breeds based on microsatellite DNA analysis: implications for conservation, J. Hered., 96, 670–678, 2005.
Tozaki, T., Takezaki, N., Hasegawa, T., Ishida, N., Kurosawa, M., Tomita, M., Saitou, N., and Mukoyama, H.: Microsatellite variation in Japanese and Asian horses and their phylogenetic relationship using a European horse outgroup, J. Hered., 94, 374–380, 2003.
Tryon, R. C., Penedo, M. C., McCue, M. E., Valberg, S. J., and Mickelson, J. R.: Evaluation of allele frequencies of inherited disease genes in subgroups of American Quarter Horses, J. Am. Vet. Med. Assoc., 234, 120–125, 2009.
Van Haeringen, H., Bowling, A. T., Stott, M. L., Lenstra, J. A., and Zwagstra, K. A.: A highly polymorphic horse microsatellite locus: VHL20, Anim. Genet., 25, 207, https://doi.org/10.1111/j.1365-2052.1994.tb00129.x, 1994.
Weir, B. S. and Cockerham, C. C.: Estimating F-statistics for the analysis of population structure, Evolution, 38, 1358–1370, 1984.
Willi, Y., Buskirk, J., and Hoffmann, A. A.: Limits to the adaptive potential of small populations, Annu. Rev. Ecol. Evol. System., 37, 433–478, 2006.
Wright, S.: The interpretation of population structure by F-statistics with special regard to systems of mating, Evolution, 19, 295–420, 1965.
Wright, S.: Evolution and the Genetics of Populations. v. 2: The Theory of Gene Frequencies, University of Chicago Press, Chicago, 1969.
Wright, S.: Evolution and the Genetics of Poulations, in: Vol. 4, Variability Within end Among Natural Populations, Univ. of Chicago Press, Chicago, 1978.
Zabek, T., Nogaj, A., Radko, A., Nogaj, J., and Slota, E.: Genetic variation of Polish endangered Bilgoraj horses and two common horse breeds in microsatellite loci, J. Appl. Genet., 46, 299–305, 2005.
Short summary
This study aimed at screening genetic diversity and differentiation in four horse breeds raised in Tunisia: the Barb (BA), Arab-Barb (AB), Arabian (AR), and English Thoroughbred (TS) breeds. A total of 200 blood samples were collected and genomic DNA was extracted. The average number of alleles per locus was 7.52 (0.49), 7.35 (0.54), 6.3 (0.44), and 6 (0.38) for the AB, BA, AR, and TS, respectively. Results showed that the important amount of genetic variation was within population.
This study aimed at screening genetic diversity and differentiation in four horse breeds raised...