Articles | Volume 59, issue 3
https://doi.org/10.5194/aab-59-395-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/aab-59-395-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Cloning and characterization of MHC-DQA1 and MHC-DQA2 molecules from yak (Bos grunniens)
Fei Ge
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Sameeullah Memon
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Dongmei Xi
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Shijun Li
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Xiangying Liu
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Guozhi Li
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Liping Wang
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Jing Leng
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Sehroon Khan
Center for Mountain Ecosystem Studies, Kunming Institute of Botany,
Chinese Academy of Science, Kunming 650201, China
The World Agroforestry Center, East and Central Asia, Kunming
650201, China
Weidong Deng
CORRESPONDING AUTHOR
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed,
Faculty of Animal Science and Technology, Yunnan Agricultural University,
Kunming 650201, China
Related authors
No articles found.
Dan Yue, Chaochao Peng, Sameeullah Memon, Azeem Iqbal, Heli Xiong, Xiaoming He, Ying Lu, and Weidong Deng
Arch. Anim. Breed., 67, 383–392, https://doi.org/10.5194/aab-67-383-2024, https://doi.org/10.5194/aab-67-383-2024, 2024
Short summary
Short summary
We focus on the Lanping black-boned sheep (LPBB) because it is the only mammal that resembles the Chinese silky fowl in the world. LPBB is characterized by black pigmentation in its plasma colorimetry and had its internal organs compared to the reddish color in Lanping normal sheep. Although the literature is abundant in genetic case studies, the processes of pigmentation remain obscure. We thus investigate the association between the PDGFRL gene polymorphism of LPBB and melanin deposition.
Heli Xiong, Xiaoming He, Jing Li, Xingneng Liu, Chaochao Peng, Dongmei Xi, and Weidong Deng
Arch. Anim. Breed., 63, 193–201, https://doi.org/10.5194/aab-63-193-2020, https://doi.org/10.5194/aab-63-193-2020, 2020
Short summary
Short summary
Lanping black-boned sheep is a novel and rare sheep breed discovered in the 1950s in China and has the same hyperpigmentation trait as silk fowl. Lanping black-bones sheep has same morphology with Lanping native sheep such as coat color, and horns and tail shape, so it's interesting to investigate the genetic relationship of the two breeds and the genetic origin of Lanping black-boned sheep. Lanping black-boned sheep and Lanping native sheep have great genetic similarity.
Gouzhi Li, Heli Xiong, Dongmei Xi, Sameeullah Memon, Liping Wang, Xiangying Liu, and Weidong Deng
Arch. Anim. Breed., 61, 131–141, https://doi.org/10.5194/aab-61-131-2018, https://doi.org/10.5194/aab-61-131-2018, 2018
Short summary
Short summary
Compared with worldwide normal sheep with reddish muscle, the Nanping black-boned sheep is the only mammal similar to silky fowl with black muscles. The effects of mutations of the gene for tyrosinase-related protein 1 (TYRP1) on the black muscles and coat color in Nanping black-boned sheep were investigated.
Cited articles
An, D., Dong, X., and Dong, Z.: Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses, Anaerobe, 11, 207–215, 2005.
Andersson, L. and Rask, L.: Characterization of the MHC class II region in cattle: the number of DQ genes varies between haplotypes, Immunogenetics, 27, 110–120, 1988.
Ballingall, K. T., Marasa, B. S., Luyai, A., and McKeever, D. J.: Identification of diverse BoLA DQA3 genes consistent with non-allelic sequences, Anim. Genet., 29, 123–129, 1998.
Bernatchez, L. and Landry, C.: MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years?, J. Evol. Biol., 16, 363–377, 2003.
Brown, J. H., Jardetzky, T. S., Gorge, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C.: Three dimensional structure of the human class II histocompatibility antigen HLA-DR1, Nature, 364, 33–39, 1993.
Germain, R. N.: The biochemistry and cell biology of antigen presentation by MHC class I and class II molecules, Implications for development of combination vaccines, Ann. N. Y. Acad. Sci., 754, 114–125, 1995.
Glass, E. J., Oliver, R. A., and Russell, G. C.: Duplicated DQ haplotypes increases the complexity of restriction element usage in cattle, J. Immunol., 165, 134–138, 2000.
He, Y., Xi, D., Leng, J., Qian, T., Jin, D., Chen, T., Yang, C., Hao, T., Yang, Z., and Deng, W.: Genetic variability of MHC class II DQB exon 2 alleles in yak (Bos grunniens), Mol. Biol. Rep., 41, 2199–2206, 2014.
Kappes, D. and Strominger, J. L.: Human class II major histocompatibility complex genes and proteins, Annu. Rev. Biochem., 57, 991–1028, 1988.
Klein, J.: Seeds of time: Fifty years ago Peter A. Gorer discovered the H-2 complex, Immunogenetics, 24, 331–338, 1986.
Kuduk, K., Babik, W., Bojarska, K., Sliwińska, E. B., Kindberg, J., Taberlet, P., Swenson, J. E., and Radwan, J.: Evolution of major histocompatibility complex class I and class II genes in the brown bear, BMC Evol. Biol., 12, 197, https://doi.org/10.1186/1471-2148-12-197, 2012.
Lazzaro, B. P. and Little, T. J.: Immunity in a variable world, Philos. T. Roy. Soc. B, 364, 15–26, 2009.
McKinney, D. M., Southwood, S., Hinz, D., Oseroff, C., Arlehamn, C. S., Schulten, V., Taplitz, R., Broide, D., Hanekom, W. A., Scriba, T. J., Wood, R., Alam, R., Peters, B., Sidney, J., and Sette, A.: A strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population, Immunogenetics, 65, 357–370, 2013.
Niranjan, S. K., Deb, S. M., Sharma, A., Mitra, A., and Kumar, S.: Isolation of two cDNAs encoding MHC-DQA1 and -DQA2 from the water buffalo, Bubalus bubalis, Vet. Immunol. Immunopathol., 130, 268–271, 2009.
Perera, B. M.: Reproductive cycles of buffalo, Anim. Reprod. Sci., 124, 194–199, 2011.
Qiu, Q., Zhang, G., Ma, T., Qian, W., Wang, J., Ye, Z., Cao, C., Hu, Q., Kim, J., Larkin, D. M., Auvil, L., Capitanu, B., Ma, J., Lewin, H. A., Qian, X., Lang, Y., Zhou, R., Wang, L., Wang, K., Xia, J., Liao, S., Pan, S., Lu, X., Hou, H., Wang, Y., Zang, X., Yin, Y., Ma, H., Zhang, J., Wang, Z., Zhang, Y., Zhang, D., Yonezawa, T., Hasegawa, M., Zhong, Y., Liu, W., Zhang, Y., Huang, Z., Zhang, S., Long, R., Yang, H., Wang, J., Lenstra, J. A., Cooper, D. N., Wu, Y., Wang, J., Shi, P., Wang, J., and Liu, J.: The yak genome and adaptation to life at high altitude, Nat. Genet., 44, 946–949, 2012.
Reed, D. H. and Frankham, R.: Correlation between fitness and genetic diversity, Conserv. Biol., 17, 230–237, 2003.
Rudd, P. M., Wormald, M. R., Stanfield, R. L., Huang, M., Mattsson, N., Speir, J. A., DiGennaro, J. A., Fetrow, J. S., Dwek, R. A., and Wilson, I. A.: Roles for glycosylation of cell surface receptors involved in cellular immune recognition, J. Mol. Biol., 293, 351–366, 1999.
Russell, B. C., Gallagher, A., Craigmile, S., and Glass, E. J.: Characterization of cattle cDNA sequences from two DQA loci, Immunogenetics, 45, 455–458, 1997.
Sena, L., Schneider, M. P., Brenig, B. B., Honeycutt, R. L., Honeycutt, D. A., Womack, J. E., and Skow, L. C.: Polymorphism and gene organization of water buffalo MHC-DQB genes show homology to the BoLA DQB region, Anim. Genet., 42, 378–385, 2011.
Sigurdardottir, S., Borsch, C., Gustafsson, K., and Andersson, L.: Gene duplications and sequence polymorphism of bovine class II DQB genes, Immunogenetics, 35, 205–213, 1992.
Sun, Y., Zheng, H., Xi, D., Zhang, X., Du, M., Pu, L., Lin, M., and Yang, Y.: Molecular characteristics of the MHC-DRA genes from yak (Bos grunniens) and Chinese yakow (Bos grunniens × Bos taurus), Int. J. Immunogenet., 41, 69–73, 2014.
Tamura, K., Dudley, J., Nei, M., and Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24, 1596–1599, 2007.
Tibayrenc, M.: Human genetic diversity and the epidemiology of parasitic and other transmissible diseases, Adv. Parasitol., 64, 377–422, 2007.
Trowsdale, J.: Genetic and functional relationships between MHC and NK receptor genes, Immunity, 15, 363–374, 2001.
Trowsdale, J. and Parham, P.: Mini-review: defense strategies and immunity-related genes, Eur. J. Immunol., 34, 7–17, 2004.
Wiener, G., Han, J. L., and Long, R. J.: Origins, domestication and distribution of yak, and production characteristics of yak, in: The yak, 2nd Edn., Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations, Bangkok, 136 pp., 2003.
Williams, A., Peh, C. A., and Elliott, T.: The cell biology of MHC class I antigen presentation, Tissue Antigens, 59, 3–17, 2002.
Xi, D., Hao, T., He, Y., Leng, J., Sun, Y., Yang, Y., Mao, H., and Deng W.: Nucleotide sequence and polymorphism of MHC class II DQB exon 2 alleles in Chinese yakow (Bos grunniens × Bos taurus), Int. J. Immunogenet., 41, 269–275, 2014.