Articles | Volume 56, issue 1
10 Oct 2013
 | 10 Oct 2013

Random regression models to estimate genetic parameters for test-day milk yield and composition in Iranian buffaloes

M. Madad, N. Ghavi Hossein-Zadeh, A. A. Shadparvar, and D. Kianzad

Abstract. The objective of this study was to estimate genetic parameters for milk yield and milk percentages of fat and protein in Iranian buffaloes. A total of 9,278 test-day production records obtained from 1,501 first lactation buffaloes on 414 herds in Iran between 1993 and 2009 were used for the analysis. Genetic parameters for productive traits were estimated using random regression test-day models. Regression curves were modeled using Legendre polynomials (LPs). Heritability estimates were low to moderate for milk production traits and ranged from 0.09 to 0.33 for milk yield, 0.01 to 0.27 for milk protein percentage and 0.03 to 0.24 for milk fat percentage, respectively. Genetic correlations ranged from −0.24 to 1 for milk yield between different days in milk over the lactation. Genetic correlations of milk yield at different days in milk were often higher than permanent environmental correlations. Genetic correlations for milk protein percentage ranged from −0.89 to 1 between different days in milk. Also, genetic correlations for milk percentage of fat ranged from −0.60 to 1 between different days in milk. The highest estimates of genetic and permanent environmental correlations for milk traits were observed at adjacent test-days. Ignoring heritability estimates for milk yield and milk protein percentage in the first and final days of lactation, these estimates were higher in the 120 days of lactation. Test-day milk yield heritability estimates were moderate in the course of the lactation, suggesting that this trait could be applied as selection criteria in Iranian milking buffaloes.