Genetic parameters for direct and maternal effects on growth traits of sheep
Abstract. The aim of the present study was to estimate (co)variance components and corresponding genetic parameters for birth weight (BW), weaning weight (WW), 6-month weight (W6), 9-month weight (W9), average daily gain from birth to weaning (WWDG), average daily gain from weaning to 6 months (W6DG) and average daily gain from 6 months to 9 months (W9DG) for a nucleus flock of Iranian Makooei sheep. Genetic parameters were estimated by REML procedure fitting six animal models including various combinations of maternal effects. The Akaike information criterion (AIC) was used to determine the most appropriate model. Estimates of direct heritability (h2) ranged from 0.13 (W6DG) to 0.32 (BW). Maternal effects were found to be important in the growth performance of the Makooei sheep, indicating the necessity of including maternal effects in the model to obtain accurate estimates of direct heritability. Estimates of maternal heritability (m2) ranged from 0.05 (W6) to 0.16 (WWDG) and the estimates of proportion of maternal permanent environmental variance to phenotypic variance (c2) were in the range between 0.05 (BW) and 0.10 (W6). Direct additive genetic correlations were positive in all cases and ranged from 0.00 (BW/W9DG) to 0.99 (WW/WWDG). Phenotypic correlations showed a broad range from −0.27 (WW/W9DG) to 0.99 (WW/WWDG). Estimates of genetic parameters showed that genetic improvement through selection programs is possible. WW would be a suitable selection criterion since it has acceptable direct heritability and relatively high genetic correlation with other traits.