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Abstract. Backcrossing is a widely used crossbreeding strategy for transferring desirable traits from a donor
line into a recurrent parent population. Although genomic selection can accelerate genetic improvement in these
populations, traditional models such as G-BLUP (genomic best linear unbiased prediction) often assume marker
independence and uniform variance contributions – simplifications that can affect the accuracy of genomic
estimated breeding values (GEBVs). To address these shortcomings, we developed three models: covariance-
adjusted genomic BLUP (CAG-BLUP), which accounts for correlated markers, and two genomic-architecture-
specific BLUP variants (GASI-BLUP for independent markers and GASC-BLUP for correlated markers), both
assuming unequal variance contributions. Evaluated against the conventional G-BLUP using simulated and em-
pirical mouse datasets, these models demonstrated superior performance in predicting GEBVs and in capturing
genetic-architecture nuances. Specifically, GASI-BLUP significantly outperformed G-BLUP in scenarios in-
volving independent quantitative trait loci (QTLs), improving GEBV prediction accuracy by up to 12 % and
reducing underestimation of genetic variance by 12 %–34 %. CAG-BLUP showed enhanced performance in de-
pendent QTL scenarios, particularly at lower heritabilities, with an improvement of up to 2 % in GEBV accuracy.
These findings highlight the importance of selecting genomic prediction models tailored to the specific genetic
architecture of traits to enhance prediction accuracy. By doing so, we pave the way for more effective breeding
programs, promising substantial genetic improvements and contributing to the overarching goal of bolstering
global food security. Future research will focus on expanding these models to incorporate non-additive genetic
effects and on testing their applicability across different species and breeding contexts, aiming to further refine
genomic prediction methodologies.

1 Introduction

Crossbreeding programs, supported by advanced genomic
selection (GS) methodologies, are at the forefront of modern
plant and animal breeding. By harnessing genetic variation
across populations, breeders can systematically enhance eco-
nomically important traits – such as productivity, adaptabil-
ity, and health. Among various crossbreeding approaches,
backcrossing has been particularly successful for transferring
favorable traits from a donor line into a recurrent parent pop-
ulation (Hospital, 2005). However, such structured breeding

often results in populations with complex linkage disequilib-
rium (LD) patterns, which affect the accurate prediction of
true breeding values (TBVs). Because TBVs are influenced
by the combined effects of multiple quantitative trait loci
(QTLs) (Lynch and Walsh, 2018), tackling these complex-
ities requires building upon foundational GS methodologi-
cal differences, such as those introduced by Meuwissen et al.
(2001), to develop more robust predictive models.

In GS, models are classified into direct and indirect meth-
ods depending on their utilization of genetic markers (Gao
et al., 2015). Genomic best linear unbiased prediction (G-
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BLUP), a direct method, directly estimates genomic esti-
mated breeding values (GEBVs) by integrating a genomic
relationship matrix (GRM) derived from single nucleotide
polymorphism (SNP) markers into mixed model equations
(Hayes et al., 2009). In contrast, SNP-BLUP, an indirect
method, estimates the effects of all SNP markers and ag-
gregates them to calculate GEBVs (Meuwissen et al., 2001).
Despite their methodological differences, both G-BLUP and
SNP-BLUP are equivalent (Goddard, 2009; Hayes et al.,
2009; Strandén and Garrick, 2009) in the sense indicated by
Henderson (1985); that is, the expectation and variance in the
observations are identical. This equivalence facilitates com-
putational efficiency, enabling breeders to handle large-scale
genomic datasets effectively.

Genetic variance is a cornerstone of heritability estimation
and of predicting genetic gain (Falconer and Mackay, 1996).
However, genomic prediction models that assume marker in-
dependence and uniform variance contributions often bias
genetic variance estimates. Hayes and Goddard (2001) high-
light the fact that quantitative traits are typically influenced
by loci with varying effect sizes, challenging the assumption
that all loci contribute equally. QTL mapping studies, such
as those by Mackay (2001), further reveal that most quantita-
tive traits are controlled by a finite number of loci, underscor-
ing the importance of accounting for unequal marker contri-
butions. Consequently, such models often over-shrink large
marker effects toward the mean, reducing the accuracy of
genomic predictions (Habier et al., 2007). Addressing these
limitations requires optimizing shrinkage parameters, which
depend on factors such as the trait’s genetic architecture, her-
itability, and number of markers and the amount of LD in the
data (Kärkkäinen and Sillanpää, 2012).

In recent years, there has been an increasing interest in uti-
lizing covariance or correlation structures in GS to account
for LD between markers (Mathew et al., 2017; Speed et al.,
2012). This is particularly crucial in populations where LD
is known to be high, such as early-segregating generations
like F2 or backcross populations, mainly due to the physical
linkage of loci (Hill et al., 2008; Tanksley, 1993). Notably,
Mathew et al. (2017) made a significant contribution to this
field by utilizing LD patterns to improve the derivation of
GRMs. However, this approach has certain limitations, in-
cluding reliance on an iterative process and cross-validation
for LD decay estimation, as well as a high computational bur-
den for calculating pairwise LD and inverting the LD matrix.

In addressing the existing limitations of GS in backcross
populations, our study introduces the covariance-adjusted
genomic BLUP (CAG-BLUP) model. This model incorpo-
rates a covariance matrix developed by Bonk et al. (2016)
for full sibs to account for marker correlations resulting
from LD. Furthermore, we present the newly developed
genomic-architecture-specific BLUP (GAS-BLUP) strategy
and its two variants: GAS-BLUP with independent mark-
ers (GASI-BLUP) and GAS-BLUP with correlated markers
(GASC-BLUP). Contrarily to using a whole-genome shrink-

age parameter, a chromosome-specific shrinkage parameter,
in theory, would be more optimal but computationally pro-
hibitive. As an intermediate solution, GAS-BLUP employs
two shrinkage parameters aimed at genome segments with
varying significance for QTLs, thus achieving a more refined
representation of the genetic architecture of traits while en-
hancing prediction accuracy in a computationally efficient
manner.

In this study, we evaluate these novel models using a
first-generation backcross (BC1) population derived from
two inbred lines, an ideal system for examining the effects
of LD and uneven marker variance. Specifically, we intro-
duce and compare three models: (1) CAG-BLUP, which
leverages a covariance matrix to reflect marker correla-
tions; (2) GASI-BLUP, assuming independent markers; and
(3) GASC-BLUP, considering correlated markers. All GAS-
BLUP variants assume an unequal contribution of markers
to genetic variance. Additionally, we introduce their equiv-
alent linear models. Our objective is to discern the proper-
ties of these models and to compare their performance with
the G-BLUP model based on three key metrics: the preci-
sion of additive genetic variability estimates; the accuracy of
GEBVs; and the predictive ability under diverse trait genetic
architectures, heritabilities, and marker densities. By provid-
ing a thorough analysis of these models, we aim to contribute
to the design of more effective breeding schemes and, ulti-
mately, to enhance genetic gain in backcross programs.

2 Materials and methods

2.1 Derivation of marker-derived genomic relationship
matrices

This section outlines the methodology employed for deriving
GRMs, which is essential for estimating the GEBVs of geno-
typed individuals. The GEBVs for genotyped individuals (n)
can be estimated using a GRM and BLUP. A GRM assuming
that all markers are independent and contribute equal vari-
ance is equivalent to the matrix G in G-BLUP (VanRaden,
2008). For backcross populations, this matrix can be written
as follows:

G=
(
ZIZ′

)
·

1
p
, (1)

where p is the number of markers (parameters), I is an n×n
identity matrix indicating the independence of markers, and
Z is a matrix containing genotype codes. We code genotypes
in Z as follows:

zij =

{
+1, for homozygous genotypes
−1, for heterozygous genotypes ,

where i = 1, . . .,n, and j = 1, . . .,p. This coding reflects the
unique structure of backcross populations involving inbred
lines, where one parent contributes segregating alleles and
the other provides fixed homozygous alleles.
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Because BC populations with inbred parents can exhibit
strong within-family LD between markers, we employ a co-
variance matrix R developed by Bonk et al. (2016) for full
sibs. This matrix helps capture marker correlations stemming
from LD. Specifically, we assume that inbred parental lines
share identical genotypes, creating a consistent LD pattern in
BC populations. Given these assumptions, a CAG relation-
ship matrix GCAG is defined as follows:

GCAG =
(
ZRZ′

)
·

1
s
,s = 1′R1. (2)

In this equation, R represents the covariance matrix, s is a
scaling factor calculated as the sum of all elements in R, and
1 is a vector of ones. The element rij of R for each chromo-
some is computed using Haldane’s mapping function (Hal-
dane, 1919), rij = exp

(
−2dij

)
, where dij is the genetic dis-

tance between the two markers in morgans.
In a backcross population, the covariance matrix is equal

to the correlation matrix because the variance in each marker
locus satisfies rii = exp(0)= 1. With a focus solely on addi-
tive effects, R is structured with one block per chromosome
and exhibits an auto-regressive variance pattern, with unity
along its diagonal. As identified in time series analysis (Se-
ber, 2008), the inverse of R is known to be sparse and tridiag-
onal, allowing for direct setup from the genetic marker map
and the distances between respective markers.

2.2 Linear models and their applications

2.2.1 CAG-BLUP model and its equivalent linear model

For simplicity, we consider a linear model with a single fixed
effect:

y = 1µ+Wg+ e. (3)

Here, y is an n× 1 vector of phenotypic values, 1 is an n-
dimensional vector of ones, µ denotes the overall mean, W
is an n×n design matrix relating records of GEBVs, g is an
n× 1 vector of GEBVs, and e is an n× 1 vector of random
residuals. We assume that the residuals are independent and
normally distributed: e ∼N

(
0,Iσ 2

e

)
, where σ 2

e is the resid-
ual variance component. GEBVs are assumed to follow a
normal distribution, g ∼N

(
0,GCAGσ

2
a

)
, differing from G-

BLUP, which assumes g ∼N
(
0,Gσ 2

a

)
, with σ 2

a representing
the additive genetic variance component.

The mixed model equations for Eq. (3) are represented as
follows:[

1′1 1′W
W′1 W′W+G−1

CAG · σ
2
e /σ

2
a

][
µ̂

ĝ

]
=

[
1′y

W′y

]
. (4)

We estimate variance components using the restricted maxi-
mum likelihood method. The marker effects m̂ in the CAG-
BLUP model are calculated as follows:

m̂= RZ′G−1
CAG ·

1
s
· ĝ. (5)

Refer to Appendix A for the CAG-BLUP’s equivalent SNP-
BLUP model and to Appendix B for the proof of equivalence.

2.2.2 GAS-BLUP models and their equivalent linear
models

The GAS-BLUP models are executed in two steps, tailored
to identify and analyze QTL presence across chromosomes.
Initially, G-BLUP is utilized to precede GASI-BLUP, and
CAG-BLUP is specifically applied before GASC-BLUP, as-
sessing QTLs on each chromosome. This stage classifies
the genome into segments of significant or non-significant
for QTLs, which are then analyzed using the corresponding
GASI-BLUP or GASC-BLUP models.

QTL-carrying chromosomes are identified through a
likelihood-ratio test, contrasting the log-likelihoods of G-
BLUP or CAG-BLUP against a null model. Significance is
determined at 1 degree of freedom with P values, adjusted
for multiple comparisons using Bonferroni correction (Holm,
1979), and a threshold of P < 0.05 denotes significance.

The model for GASC-BLUP is as follows:

y = 1µ+Wgsg+Wgnsg+ e. (6)

In this equation, gsg and gnsg represent GEBV vectors for
significant and non-significant genome segments, respec-
tively. The GASC-BLUP differs from GASI-BLUP in terms
of its relationship matrix implementation. The mixed model
equations for Eq. (6) are
 1′1 1′W 1′W

W′1 W′W+G−1
CAGsg

· σ 2
e /σ

2
asg

W′W
W′1 W′W W′W+G−1

CAGnsg
· σ 2
e /σ

2
ansg


 µ

ĝsg
ĝnsg

=
 1′y

W ′y

W ′y

 . (7)

Here, σ 2
asg

and σ 2
ansg

represent the additive genetic variance
components for significant and non-significant genome seg-
ments. GEBVs are calculated as ĝ = ĝsg+ ĝnsg, and the es-
timated marker effects are derived using

m̂sg = RsgZ′sgG−1
CAGsg

·
1
ssg
· ĝsg

m̂nsg = RnsgZ′nsgG−1
CAGnsg

·
1
snsg
· ĝnsg

. (8)

For the GASI-BLUP model, which employs the original
GRM G instead of the GCAG, the estimated marker effects
are calculated using

m̂sg = Z′sgG−1
sg ·

1
psg
· ĝsg

m̂nsg = Z′nsgG−1
nsg ·

1
pnsg
· ĝnsg

. (9)

Refer to Appendix C for the GAS-BLUP equivalent linear
marker models and to Appendix D for the proof of equiva-
lence.

https://doi.org/10.5194/aab-68-377-2025 Arch. Anim. Breed., 68, 377–394, 2025



380 A. A. Musa et al.: Genomic prediction in a backcross population using relationship matrices

2.3 Simulated dataset

We conducted two sets of simulations, categorized as inde-
pendent and dependent simulations. These simulations were
implemented using a custom-written Fortran 95 program,
providing precise control over genetic parameters and envi-
ronmental effects.

In the independent simulation, we modeled a BC1 pop-
ulation derived by crossing F1 individuals (from two inbred
parental lines) with the recurrent parent. This design creates a
unique genetic structure characterized by high LD across the
genome, driven by limited recombination events and fixed
parental alleles. Such LD patterns resemble those found in
structured populations like full-sib families, justifying the
use of the covariance matrix tailored to full-sib relationships
(Bonk et al., 2016).

The simulated population consisted of 100 000 individu-
als, each possessing 20 chromosomes, reflecting the mouse
genome structure. The chromosomes were each 100 cM (cen-
timorgans) long. To mimic a high-density genotyping envi-
ronment typical in mouse studies, we evenly distributed 101
markers on each chromosome, resulting in a marker den-
sity of 2020 markers per genome. Recombination rates be-
tween these markers were determined using Haldane’s map-
ping function (Haldane, 1919). Subsequently, we introduced
12 QTLs with effect sizes ranging from −0.25 to 1.00 at ex-
act marker locations on the first 12 chromosomes. The cu-
mulative effect of these QTLs constituted the TBV for each
individual. Phenotypic values were derived by adding ran-
dom residual effects to the TBV.

To assess the model’s performance across different genetic
architectures, we simulated three heritability scenarios: low
(h2
= 0.17), medium (h2

= 0.29), and high (h2
= 0.70). Ad-

ditionally, we adjusted the marker density by removing mark-
ers, resulting in densities of 420 and 220 markers on the
genome, spaced at 5 and 10 cM intervals, respectively (Ta-
ble 1). In these scenarios, QTLs were located at exact marker
locations and between-marker positions. In each simulation
scenario, we divided the 100 000 individuals into 200 repli-
cates, each consisting of 500 individuals. This division was
implemented to explore different relationships between the
number of parameters (p) and the number of individuals (n).
Specifically, we examined situations where p� n, p ≈ n,
and p < n, corresponding to marker densities of 2020, 420,
and 220 markers, respectively.

The dependent simulation mirrored the independent sim-
ulation in terms of heritability and marker density. However,
it featured a more intricate genetic setup, with several QTLs
of varying effect sizes when coupling on the first three chro-
mosomes and two QTLs with repulsion on the fourth chro-
mosome (Table 1).

The choice of specific parameters in the simulated dataset,
such as the number of individuals, chromosomes, and marker
densities, aimed to emulate a realistic backcross scenario.
The selection of 12 QTL with varying effect sizes reflects

Table 1. QTL positions and their effect sizes in independent and
dependent QTL simulations of backcross populations.

Marker density

Independent simulation 220 420 2020 Effect size

Chromosome

1 6 11 51 0.50
2 4–5 7–8 34 1.00
3 7–8 14–15 67 0.25
4 1–2 2 6 0.50
5 10–11 20 96 0.50
6 4–5 8–9 40 0.10
7 6–7 12–13 60 0.25
8 6 11 51 0.25
9 4–5 7–8 34 −0.25
10 7–8 14–15 67 0.50
11 3 5 21 1.00
12 9 17 81 0.10

Dependent simulation

Chromosome

1
3 5 21 1.00

4–5 7–8 34 1.00
10–11 20 96 0.50

2

1–2 2 6 0.50
6 11 51 0.50

6–7 12–13 60 0.25
7–8 14–15 67 0.50

3
4–5 8–9 40 0.10
7–8 14–15 67 0.25

9 17 81 0.10

4
4–5 7–8 34 −0.25

6 11 51 0.25

Independent simulations feature a single quantitative trait locus (QTL) per chromosome
for the first 12 chromosomes, whereas dependent simulations include multiple QTLs
when coupling on the first three chromosomes and two QTLs with repulsion on the
fourth. QTLs are positioned at precise marker locations or in between two markers. The
simulations cover marker densities of 220, 420, and 2020 under heritability scenarios of
0.17, 0.29, and 0.70.

practical breeding scenarios, such as introgression programs,
where traits are influenced by a limited number of loci with
measurable effects. This design provides a controlled frame-
work to systematically explore the impact of genetic archi-
tectures and marker densities on model performance under
high-LD conditions. While a polygenic background was not
included, this choice aligns with the study’s focus on evalu-
ating the models’ abilities to handle marker correlation and
variance partitioning in structured populations.

2.4 Empirical dataset

To complement our simulation studies and to validate the
models using real-world data, we analyzed an existing mouse
backcross dataset provided by Leiter et al. (2009). This
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dataset comprises a variable number of individuals (rang-
ing from 142 to 310, depending on phenotypic data avail-
ability), 23 distinct phenotypes, and 311 SNP markers with
genetic positions. The dataset is publicly accessible and can
be found at https://phenome.jax.org/projects/Leiter2, last ac-
cess: 20 May 2024. Notably, approximately 2.5 % of the
marker genotypes were missing and were imputed using a
hidden Markov model approach, implemented through the
fill.geno function in R/qtl (Broman et al., 2003).

Variance components and heritabilities were estimated us-
ing the gremlin R package (Wolak, 2020) via restricted maxi-
mum likelihood. Standard errors for these estimates were ob-
tained using the deltaSE function in gremlin, which applies
the delta method to approximate variances. A separate appli-
cation of the delta method was used to derive standard errors
for Mendelian sampling variance, as detailed in Sect. 2.5.1.

2.5 Criteria for comparison

2.5.1 Genetic and residual variances

To evaluate the models, we first calculated the variance in
TBV (within-family) σ 2

g for all 100 000 individuals. This was
done by multiplying the simulated marker effects m with the
covariance matrix, as per the method described by Bonk et
al. (2016):

σ 2
g =m′Rm. (10)

In contrast, the variance in GEBVs (σ 2
ĝ

), which reflects how
well the estimated marker effects mirror the true within-
backcross genetic variability, was calculated for each repli-
cate (500 individuals) of both G-BLUP and CAG-BLUP us-
ing estimated marker effects m̂ instead. For GASC-BLUP
and GASI-BLUP, σ 2

ĝ
= m̂′sgRm̂sg+ m̂′nsgRm̂nsg. The true

residual variance (σ 2
e ) was obtained from the variance in

residual effects across all individuals.
To evaluate model fit, we calculated the root-mean-square

error (RMSE) of σ 2
ĝ

and the RMSE of the estimated residual

variance (σ̂ 2
e ) across all 200 replications of each simulated

scenario using

rMSEσ 2
ĝ
=

√
1

200

500∑
i=1

(
σ 2(i)

ĝ
− σ 2

g

)2

rMSEσ̂ 2
e
=

√
1

200

500∑
i=1

(
σ̂ 2(i)
e − σ

2
e

)2 , (11)

where σ 2(i)

ĝ
and σ̂ 2(i)

e denote the estimated genetic and resid-
ual variances of replicate i. Lower RMSE values indicate a
closer approximation to the true variances and, hence, a bet-
ter model fit.

Standard errors for σ 2
ĝ

were derived using a first-order Tay-
lor expansion of its variance approximation considering the
uncertainty in m̂. Specifically, the σ 2

ĝ
was computed as a

function of m̂ and R. The variance of m̂ was obtained from
the mixed model equations, leveraging the inverse coefficient
matrix structure as described by Searle et al. (2006) and Lu
and Shiou (2002). Standard errors were then computed as the
square root of the derived variances.

2.5.2 Accuracy of GEBVs and predictive ability

The accuracy was obtained as the correlation
(
rĝ,g

)
between

the GEBVs and TBVs. A further criterion for the accuracy of
the GEBVs was the RMSE of the GEBVs:

rMSEg =

√√√√ 1
200

1
500

200∑
i=1

500∑
j=1

(
ĝ

(i)
j − g

(i)
j

)2
, (12)

where ĝ(i)
j and g(i)

j denote the estimated GEBVs and TBVs
of individual j in replicate i.

In GS, breeders often select individuals based on their
GEBVs. As such, improved accuracy in GEBV estimation
directly enhances selection accuracy. To evaluate the models’
predictive capabilities, each replicate was treated as a train-
ing set, and its estimated marker effects were used to pre-
dict GEBVs for the remaining 199 replicates. This generated
99 500 GEBVs per replicate. The GEBVs were then paired
with their corresponding TBV, and selection was based on
GEBV at varying rates (from 5 % to 100 %). We then calcu-
lated the mean TBV of the selected animals.

2.5.3 Cross-validation (4-fold)

We utilized 4-fold cross-validation to assess the models’ pre-
diction accuracies within our empirical dataset, a method
chosen due to the limited number of individuals available
(Kuhn and Johnson, 2013). In this approach, the dataset was
evenly divided into four distinct subsets. During each cross-
validation cycle, three subsets were combined to form the
training set, while the remaining subset was designated as the
validation set. The training sets were used to estimate predic-
tor effects, which, in turn, predicted the GEBVs for individ-
uals in the validation set. The accuracy of these predictions
was evaluated based on the correlation between the predicted
GEBVs and the observed phenotypes within the validation
set. This cross-validation cycle was performed four times, ro-
tating the validation set each time to ensure that each subset
was used as the validation set once. The prediction accura-
cies obtained from each cycle were then averaged to produce
a final estimate of model performance.

All analyses were conducted using the R package gremlin
(Wolak, 2020) and custom scripts written in R version 4.2.2
(R Core Team, 2022).

3 Results

This section evaluates the performance of various genomic
prediction models – CAG-BLUP, GASI-BLUP, GASC-
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BLUP, and the conventional G-BLUP – within a backcross
population using both simulated and empirical datasets. The
analyses focus on model performance across different trait
genetic architectures, heritabilities, and marker densities.

3.1 Simulated dataset analysis

Our simulated dataset consisted of 18 scenarios, each defined
by combinations of two trait genetic architectures (indepen-
dent and dependent QTL), three heritability levels (0.17,
0.29, and 0.70), and three marker densities (2020, 420, and
220 markers). The evaluation of the models centered on ad-
ditive genetic variability estimates, accuracy of GEBVs, and
predictive ability.

3.1.1 Model performance in terms of additive genetic
variability estimates and accuracy of GEBVs

For independent QTL scenarios (Table 2 and Table S1 in the
Supplement), G-BLUP and GASI-BLUP, under the assump-
tion of marker independence, provided estimates for additive
(σ̂ 2
a ) and residual (σ̂ 2

e ) variance components that were closer
to the true variances than those provided by CAG-BLUP and
GASC-BLUP. Across all scenarios, each model consistently
underestimated σ 2

g , a tendency that diminished as heritabil-
ity increased (Table 2). This underestimation was signifi-
cantly less severe in G-BLUP and GASI-BLUP compared to
in CAG-BLUP and GASC-BLUP, respectively. Specifically,
G-BLUP’s underestimation of true variance ranged between
16 %–44 %, a marked improvement over CAG-BLUP, which
exhibited a 20 %–47 % underestimation, while also enhanc-
ing GEBV prediction accuracy by 2 percentage points. Even
more impressively, GASI-BLUP reduced the underestima-
tion of true variance to 12 %–34 % and further improved
GEBV prediction accuracy by approximately 2 percentage
points relative to G-BLUP. This highlights GASI-BLUP’s su-
perior performance in both estimating variance and predict-
ing GEBVs.

In scenarios involving dependent QTLs (Table 2), CAG-
BLUP demonstrated an improved performance over G-
BLUP in predicting σ 2

g at lower heritabilities, indicating its
utility in scenarios with dependent QTLs. The degree of un-
derestimation for CAG-BLUP was observed to be between
24 %–32 %, a marked improvement when compared to G-
BLUP, which exhibited a range of 25 %–35 % underestima-
tion. Moreover, CAG-BLUP enhanced GEBV prediction ac-
curacy by up to 2 percentage points compared to G-BLUP.
However, as heritability increased to 70 %, the advantage of
CAG-BLUP waned, with G-BLUP exhibiting a lower under-
estimation rate of 11 % compared to CAG-BLUP’s 13 %, re-
versing the trend observed at lower heritability levels.

GASI-BLUP exhibited a consistently strong performance
across varying levels of heritability, effectively reducing the
underestimation of the true variance more efficiently than its
counterparts. In particular, GASI-BLUP decreased the under-

estimation to 5 %–12 %, a reduction notably greater than that
observed with G-BLUP, which ranged from 11 % to 35 %.
Additionally, GASI-BLUP improved the accuracy of GEBVs
by as much as 11 percentage points relative to G-BLUP. Al-
though GASC-BLUP consistently outperformed both CAG-
BLUP and G-BLUP in reducing the degree of underestima-
tion, its performance did not exceed that of GASI-BLUP de-
spite being specifically designed for scenarios involving de-
pendent QTLs. The degree of underestimation attributable to
GASC-BLUP was recorded to be between 5 %–14 %, signi-
fying an enhancement relative to G-BLUP and CAG-BLUP
but still falling short of the superior efficiency demonstrated
by GASI-BLUP.

The performance of the models under varying marker den-
sities (Table 3) paralleled the trends observed under varying
heritabilities for both independent and dependent QTL sce-
narios (Table 2). With an increase in marker densities, im-
provements were noted in σ 2

g , the accuracy of GEBVs, and
the RMSE of GEBV predictions. However, these improve-
ments were more modest in comparison to those driven by
heritability changes. Specifically, in the context of G-BLUP’s
performance in independent QTL scenarios, an increase in
marker densities resulted in a 1 percentage point reduction
in the underestimation of true genetic variance and a 1 % in-
crease in GEBV accuracy. In contrast, an increase in heri-
tability led to a significant 27 % decrease in the underesti-
mation of true genetic variance and a substantial increase of
17 percentage points in GEBV accuracy. See Table S1 in the
Supplement for a detailed exploration of the performance of
these genomic prediction models across other scenarios of
heritability and marker density.

3.1.2 Estimates of marker effects

Our analysis, presented in Figs. 1–3, evaluated the perfor-
mance of the models in estimating marker effects across in-
dependent and dependent QTL simulations, using data from
20 randomly selected replicates and all 200 replicates.

In the independent simulation, the magnitude of estimated
marker effects increased with heritability, while variation
was more pronounced at lower heritability levels (Fig. 1). G-
BLUP and GASI-BLUP showed higher noise, particularly on
chromosomes without QTLs or with small QTL effects. Con-
versely, CAG-BLUP and GASC-BLUP, benefiting from a
correlation structure, produced smoother curves across chro-
mosomes, aiding in the identification of QTL regions. GASI-
BLUP and GASC-BLUP exhibited larger marker effects on
chromosomes with QTLs due to unequal variance allocation
among markers.

The dependent simulation revealed similar trends (Fig. 2).
G-BLUP and GASI-BLUP displayed pronounced marker ef-
fects at QTL positions, while CAG-BLUP and GASC-BLUP
generated smoother curves over dependent QTL. The corre-
lation structure in CAG-BLUP and GASC-BLUP enhanced
QTL detection but limited their ability to identify closely
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Table 2. Mean performance of the models in various scenarios of heritability in simulations of backcross populations.

Simulated Model Estimated parameters

h2 σ 2
g σ 2

e σ̂ 2
a (RMSE) σ 2

ĝ
(RMSE) σ̂ 2

e (RMSE) Accuracy RMSE of
(rĝ,g) GEBVs

Independent simulation

0.17 3.27 16.00 G-BLUP 3.3(0.91) 1.83(1.58) 16.02(1.1) 0.77 1.18
CAG-BLUP 4.31(1.83) 1.72(1.68) 16.8(1.34) 0.75 1.22
GASI-BLUP 3.22(1.06) 2.15(1.31) 16.06(1.11) 0.79 1.13
GASC-BLUP 6.77(7.07) 2.03(1.41) 16.66(1.28) 0.77 1.17

0.29 3.27 8.01 G-BLUP 3.25(0.63) 2.17(1.2) 8.04(0.57) 0.84 1
CAG-BLUP 5.12(2.37) 2.06(1.31) 8.68(0.88) 0.82 1.06
GASI-BLUP 3.15(0.75) 2.41(0.99) 8.08(0.58) 0.86 0.94
GASC-BLUP 8.68(8.92) 2.3(1.09) 8.55(0.79) 0.84 1

0.70 3.27 1.40 G-BLUP 3.18(0.34) 2.74(0.59) 1.39(0.12) 0.94 0.62
CAG-BLUP 9.67(6.7) 2.62(0.7) 1.72(0.35) 0.92 0.7
GASI-BLUP 3.17(0.43) 2.87(0.49) 1.39(0.12) 0.95 0.56
GASC-BLUP 26.16(25.35) 2.78(0.56) 1.44(0.21) 0.94 0.61

Dependent simulation

0.17 6.54 31.93 G-BLUP 6.62(1.32) 4.27(2.5) 31.19(2.24) 0.82 1.48
CAG-BLUP 8.99(3.08) 4.42(2.36) 32.35(2.13) 0.84 1.41
GASI-BLUP 5.2(2.19) 5.72(1.46) 31.57(2.1) 0.93 0.99
GASC-BLUP 13.05(15.01) 5.62(1.48) 32.18(2.09) 0.92 1.02

0.29 6.54 16.00 G-BLUP 6(1.03) 4.88(1.84) 15.54(1.18) 0.88 1.24
CAG-BLUP 8.79(2.64) 4.96(1.76) 16.47(1.17) 0.89 1.2
GASI-BLUP 4.57(2.32) 5.92(1.07) 15.87(1.06) 0.95 0.81
GASC-BLUP 18.89(20.65) 5.85(1.1) 16.19(1.1) 0.95 0.84

0.70 6.54 2.80 G-BLUP 4.74(1.85) 5.81(0.84) 2.61(0.29) 0.96 0.76
CAG-BLUP 9.61(3.4) 5.71(0.93) 3.15(0.42) 0.95 0.81
GASI-BLUP 3.56(3.04) 6.21(0.57) 2.75(0.2) 0.98 0.54
GASC-BLUP 39.51(35.98) 6.19(0.57) 2.58(0.34) 0.98 0.57

Note that σ2
g denotes true genetic (Mendelian sampling) variance; σ2

e denotes true residual variance; σ̂2
a and σ̂2

e denote mean estimated additive

and residual variance components, respectively; σ2
ĝ

denotes mean estimated genetic (Mendelian sampling) variance; RMSE denotes root mean

squared error, indicating the deviation of estimated variances from true values; h2 denotes heritability; GEBVs denotes genomic estimated
breeding values; and accuracy (rĝ,g ) refers to the correlation between GEBVs and true breeding values, indicating the precision of GEBVs in
predicting true breeding values. Results are for a marker density of 2020.

positioned dependent QTLs. These trends were consistent
across scenarios with different marker densities.

The models’ performances under varying marker densities
resembled their performances under different heritabilities.
However, a notable difference emerged in terms of the mag-
nitude of marker effects, which decreased as marker densities
increased (Fig. 3). This contrasted with the effect of heritabil-
ity, where marker effects increased with higher heritability
levels.

3.1.3 Predictive ability

In the evaluation of predictive ability, we focused on the
mean TBVs of individuals selected based on their GEBVs
within the dependent simulation. Figure 4a visually presents

this assessment, comparing the mean TBVs of selected indi-
viduals for each model to a reference line representing indi-
viduals selected based on their TBV.

Notably, as heritability increased, the mean TBVs of se-
lected individuals tended to approach the reference line
for all models. Specifically, GASI-BLUP and GASC-BLUP
demonstrated not only comparable but also superior perfor-
mance compared to G-BLUP and CAG-BLUP. Interestingly,
G-BLUP and CAG-BLUP exhibit similar levels of perfor-
mance in relation to each other.

In contrast, the influence of marker distance on the rate
of individuals selected based on their GEBVs is less pro-
nounced, as shown in Fig. 4b. Heritability significantly im-
pacts the predictive ability of the models, while the effect
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Table 3. Mean performance of the models in various scenarios of marker density in simulations of backcross populations.

Simulated Model Estimated parameters

MD σ 2
g σ 2

e σ̂ 2
a (RMSE) σ 2

ĝ
(RMSE) σ̂ 2

e (RMSE) Accuracy RMSE of
(rĝ,g) GEBVs

Independent simulation

220 3.27 8.01 G-BLUP 3.08(0.63) 2.12(1.25) 8.14(0.6) 0.83 1.02
CAG-BLUP 4.93(2.14) 2.04(1.33) 8.67(0.88) 0.81 1.06
GASI-BLUP 2.89(0.76) 2.36(1.03) 8.19(0.61) 0.85 0.96
GASC-BLUP 8.21(7.63) 2.28(1.11) 8.55(0.79) 0.83 1.01

420 3.27 8.01 G-BLUP 3.2(0.63) 2.15(1.22) 8.06(0.58) 0.84 1
CAG-BLUP 5.07(2.3) 2.06(1.31) 8.67(0.87) 0.82 1.06
GASI-BLUP 3.04(0.73) 2.39(1.01) 8.11(0.58) 0.86 0.95
GASC-BLUP 8.41(7.76) 2.29(1.1) 8.55(0.79) 0.84 1

2020 3.27 8.01 G-BLUP 3.25(0.63) 2.17(1.2) 8.04(0.57) 0.84 1
CAG-BLUP 5.12(2.37) 2.06(1.31) 8.68(0.88) 0.82 1.06
GASI-BLUP 3.15(0.75) 2.41(0.99) 8.08(0.58) 0.86 0.94
GASC-BLUP 8.68(8.92) 2.3(1.09) 8.55(0.79) 0.84 1

Dependent simulation

220 6.54 16.00 G-BLUP 5.79(1.12) 4.8(1.91) 15.68(1.15) 0.87 1.27
CAG-BLUP 8.64(2.48) 4.91(1.79) 16.46(1.18) 0.88 1.22
GASI-BLUP 4.12(2.62) 5.87(1.09) 16.04(1.07) 0.94 0.85
GASC-BLUP 16.79(17.16) 5.84(1.11) 16.2(1.1) 0.94 0.87

420 6.54 16.00 G-BLUP 5.93(1.07) 4.84(1.87) 15.58(1.17) 0.88 1.25
CAG-BLUP 8.73(2.57) 4.94(1.77) 16.47(1.18) 0.88 1.21
GASI-BLUP 4.34(2.45) 5.9(1.08) 15.93(1.06) 0.95 0.82
GASC-BLUP 18.59(20.22) 5.85(1.11) 16.18(1.1) 0.95 0.85

2020 6.54 16.00 G-BLUP 6(1.03) 4.88(1.84) 15.54(1.18) 0.88 1.24
CAG-BLUP 8.79(2.64) 4.96(1.76) 16.47(1.17) 0.89 1.2
GASI-BLUP 4.57(2.32) 5.92(1.07) 15.87(1.06) 0.95 0.81
GASC-BLUP 18.89(20.65) 5.85(1.1) 16.19(1.1) 0.95 0.84

Note that σ2
g denotes true genetic (Mendelian sampling) variance; σ2

e denotes true residual variance; σ̂2
a and σ̂2

e denote mean estimated additive and

residual variance components, respectively; σ2
ĝ

denotes mean estimated genetic (Mendelian sampling) variance; RMSE denotes root mean squared
error, indicating the deviation of estimated variances from true values; MD denotes marker density; GEBVs denotes genomic estimated breeding
values; and accuracy (rĝ,g ) refers to the correlation between GEBVs and true breeding values, indicating the precision of GEBVs in predicting true
breeding values. Results are for a heritability of 0.29.

of marker distance on the selection rate is relatively subtle.
This underscores the primary role of heritability in determin-
ing predictive accuracy, with marker distance playing a sec-
ondary role in this context.

3.2 Empirical data analysis

The analysis of empirical data from a mouse backcross
study, alongside the simulated dataset, aimed to assess the
real-world applicability of various genomic prediction mod-
els. This evaluation compared their performance, focusing
on traits like estimated genetic variance, heritability, and
prediction accuracy, as detailed in Table 4. GASI-BLUP
and GASC-BLUP consistently demonstrated superior perfor-
mance over G-BLUP and CAG-BLUP in terms of these met-

rics. Notably, GASC-BLUP provided the highest estimates
of additive genetic variance for each trait and matched GASI-
BLUP in reaching the highest levels of prediction accuracy.

The analysis of estimated marker effects for cholesterol
levels, illustrated in Fig. 5a, confirmed patterns observed in
the simulated data. Absolute values, with the top 10 % of
markers highlighted in black, displayed fewer fluctuations
in Fig. 5b compared to non-absolute values in Fig. 5a. No-
tably, the G-BLUP model, which had markers in the top 10 %
spread across 10 chromosomes, was identified as the model
with the highest variability. Conversely, other models showed
a more focused distribution of their top 10 % of markers, lim-
ited to no more than three chromosomes. This highlighted
clear differences in model performance and marker detection
capability across chromosomes in an empirical setting, re-
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Figure 1. Estimated marker effects of 20 randomly selected replicates (light blue) and the means of all 200 replicates (black) in independent
simulation scenarios with a marker density of 2020 markers and different heritabilities (h2). The black diamonds are the quantitative trait
locus positions. The results presented are for chromosomes 1–14 only.

flecting similar trends noted in dependent QTL scenarios of
the simulated data.

4 Discussion

4.1 Model development and assumptions

In our study, we have developed three novel genomic predic-
tion models, namely CAG-BLUP, GASI-BLUP, and GASC-
BLUP, each tailored to overcome specific limitations identi-
fied in traditional models like G-BLUP. Traditional GS mod-
els often do not fully capture the complexities of genetic ar-
chitecture, particularly in backcross populations, due to their
assumptions of marker independence and uniform variance
contribution across markers. Our models offer a nuanced ap-
proach to address these complexities.

CAG-BLUP is designed with the specific intent of enhanc-
ing prediction accuracy for traits influenced by dependent
QTLs. It utilizes a covariance matrix to account for marker
correlations resulting from LD, drawing upon the methodol-
ogy developed by Bonk et al. (2016) for full sibs. This model

aims to improve prediction accuracy in genetic architectures
where LD and marker correlations are pivotal in accurate ge-
netic variance estimation.

GAS-BLUP models, comprising GASI-BLUP for scenar-
ios with independent markers and GASC-BLUP for those
with correlated markers, mark a departure from traditional
assumptions by recognizing the unequal contributions of
markers to genetic variance. The introduction of two dis-
tinct shrinkage parameters in these models is a strategic in-
novation aimed at balancing the need for computational ef-
ficiency with the methodological demand for precision. This
dual-parameter approach is informed by the theoretical ideal
of assigning unique shrinkage values to each chromosome.
Due to computational limitations, however, the models prag-
matically apply one parameter to chromosomes marked by
significant QTL presence and another to the remainder. This
differentiation allows for a more detailed analysis of genomic
regions, enhancing the model’s capacity to reflect trait heri-
tability.

By integrating considerations for marker correlation,
along with the nuanced application of shrinkage parameters,
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Figure 2. Estimated marker effects of 20 randomly selected replicates (light blue) and the means of all 200 replicates (black) in the dependent
simulation scenarios with a marker density of 2020 markers and different heritabilities (h2). The black diamonds are the quantitative trait
locus positions. The results presented are for chromosomes 1–6 only.

our models are specifically engineered to enhance the accu-
racy of genomic predictions within backcross populations.
This development signifies a targeted effort to refine GS prac-
tices, offering a set of tools designed to accurately model the
genetic dynamics encountered in such breeding schemes.

4.2 Model performance analysis

The comparative analysis of the newly developed models
(CAG-BLUP, GASI-BLUP, and GASC-BLUP) against the
traditional G-BLUP model highlighted significant variances
in their ability to estimate additive genetic variance and the
accuracy of GEBVs. This section synthesizes these findings,
emphasizing the implications of distinct model assumptions
for genomic prediction accuracy, particularly within back-
cross populations.

4.2.1 Additive genetic variability and GEBV accuracy

Our comparative analysis revealed significant discrepancies
in the σ̂ 2

a values across the models, underscoring the influ-
ence of their distinct assumptions on genomic predictions. It

is crucial to note that this variance is of limited relevance
within backcross populations as it represents genetic vari-
ability among unrelated, non-inbred individuals in the base
population (Legarra, 2016).

More pertinent to backcross populations is the σ 2
g or the

Mendelian sampling variance, which directly reflects the
models’ abilities to accurately capture within-family genetic
variability. Our analysis demonstrated significant disparities
in σ 2

g estimates among the models, with G-BLUP and GASI-
BLUP showing greater proficiency in scenarios characterized
by independent QTLs compared to CAG-BLUP and GASC-
BLUP, respectively. These models, adhering to the assump-
tion of marker independence, yielded estimates more closely
aligned with actual genetic variance, evidencing their effi-
cacy in representing additive genetic effects with accuracy.

Conversely, CAG-BLUP’s design, incorporating LD and
marker correlations, proved to be advantageous in scenarios
with dependent QTLs and lower heritabilities. However, as
heritability increases, the benefit conferred by CAG-BLUP
is diminished, suggesting a convergence towards direct addi-
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Figure 3. Estimated marker effects of 20 randomly selected replicates (light blue) and the means of all 200 replicates (black) in independent
simulation scenarios with a heritability of 0.29 and different marker densities (MDs). The results presented are for chromosomes 1–14 only.

tive genetic influences in environments marked by high heri-
tability.

Notably, our analysis indicated the superior performance
of GAS-BLUP models compared to G-BLUP and CAG-
BLUP models. However, despite its intention to address
marker correlations, GASC-BLUP did not surpass GASI-
BLUP, even in simulations involving dependent QTL ar-
chitectures. This suggests a potential limitation in GASC-
BLUP’s current strategy for handling marker correlations,
implying that it may not fully capture the complexities inher-
ent in such genetic architectures. Furthermore, sensitivities in
detecting chromosome-carrying QTLs (see Table S2) could
also contribute to this observation. Specifically, an examina-
tion of QTL detection capabilities, particularly between G-
BLUP and CAG-BLUP, revealed a slight advantage for G-
BLUP in identifying chromosomes carrying QTLs. This dis-
parity in QTL detection might contribute to the observed per-
formance differences, underscoring the necessity for further
refinement in GASC-BLUP’s approach to enhance its effec-
tiveness in elucidating the dynamics of dependent QTLs.

4.2.2 Influence of heritability and marker density

This study further explored the impact of heritability and
marker density on the accuracy of GEBVs and the estima-
tion of genetic variance. A consistent trend of underestimat-
ing true genetic variance was observed across all models, a
pattern that lessened with increases in heritability and marker
density. These findings are consistent with prior research
(Dou et al., 2016; Peixoto et al., 2016; Poland et al., 2012),
suggesting that a limited number of markers can effectively
represent genetic variability in populations like backcross or
F2 due to high allele sharing. These insights emphasize the
necessity of strategically considering both heritability and
marker density in genomic prediction efforts, highlighting
their significant influence on the outcomes of genomic pre-
dictions.

4.2.3 Estimates of marker effects

Our examination of the genomic prediction models’ strate-
gies for estimating marker effects unveils significant dis-
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Figure 4. Mean TBVs of individuals that were selected by their estimated breeding values in the dependent simulation. Panel (a) shows
results for scenarios with a marker density of 2020 markers and different heritabilities (h2). Panel (b) shows results for scenarios with a
heritability of 0.17 and different marker densities (MDs).

tinctions in their methodologies, each bearing consequential
implications for the accuracy of GS and the delineation of
QTLs.

Marker independence vs. correlation structures. The anal-
ysis presented in Figs. 1–3 demonstrated the divergent ap-
proaches taken by the models under review. G-BLUP and
GASI-BLUP, operating under the assumption of marker in-
dependence, exhibited a propensity to generate estimates
with notable variability. This variability was particularly pro-
nounced on chromosomes devoid of clear QTLs or those with
minimal QTL effects, potentially making their identification
difficult. Such variability might impede the clear distinction
between true genetic signals and background noise, aligning
with observations by Kärkkäinen and Sillanpää (2012) re-
garding the implications of noise in genetic marker data for
QTL detection.

Conversely, models like CAG-BLUP and GASC-BLUP
that integrate correlation structures into their estimation

processes produce markedly smoother estimates across the
genome, facilitating the identification of QTL regions, partic-
ularly in genetic contexts characterized by QTL dependency.
However, these models may not pinpoint closely situated de-
pendent QTLs accurately, tending to generate broader curves
over areas rich in QTLs rather than identifying specific loci
precisely. This limitation indicates the need for further re-
finement to fully resolve the complexities of tightly linked
QTL clusters. The observed effects in a randomly chosen
replicate from both independent and dependent simulations
(Fig. S1a and b) depict the impacts of integrating correlation
structures and of unequal variance allocation on QTL iden-
tification. While these approaches significantly refine the es-
timation of marker effects, delineating the precise locations
of QTLs ultimately requires the application of fine mapping
techniques.

Shrinkage and its implications. The variation observed in
the magnitude of estimated marker effects across the models
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Table 4. Performance of the models in real backcross data.

Model σ̂ 2
a (SE) σ 2

ĝ
(SE) σ̂ 2

e (SE) ĥ2(SE) Accuracy

Bone mineral content

G-BLUP 8.37× 10−4 (3.99× 10−4) 4.95× 10−4 (1.59× 10−4) 2.64× 10−3 (3.8× 10−4) 0.16(0.05) 0.38
CAG-BLUP 1.06× 10−3 (5.62× 10−4) 5.86× 10−4 (1.95× 10−4) 2.77× 10−3 (3.58× 10−4) 0.17(0.05) 0.39
GASI-BLUP 6.46× 10−4 (3.94× 10−4) 5.41× 10−4 (2.01× 10−4) 2.73× 10−3 (3.85× 10−4) 0.17(0.05) 0.41
GASC-BLUP 8.65× 10−4 (6.56× 10−4) 6.20× 10−4 (2.21× 10−4) 2.82× 10−3 (3.61× 10−4) 0.18(0.05) 0.42

Total cholesterol in plasma

G-BLUP 190.22(58.29) 144.35(26.13) 154.32(25.78) 0.48(0.06) 0.61
CAG-BLUP 382.01(149.22) 152.63(29.69) 181.50(26.01) 0.46(0.06) 0.61
GASI-BLUP 187.30(82.26) 170.74 (30.75) 162.10(24.86) 0.51(0.06) 0.67
GASC-BLUP 1064.19(743.44) 186.18(32.36) 169.57(25.83) 0.52(0.05) 0.67

High-density lipoproteins

G-BLUP 160.01(49.75) 119.25(22.49) 135.29(22.51) 0.47(0.06) 0.58
CAG-BLUP 335.51(131.18) 130.01(26.02) 156.54(22.50) 0.45(0.06) 0.59
GASI-BLUP 171.89(78.74) 140.84(25.90) 140.12(21.64) 0.50(0.06) 0.65
GASC-BLUP 877.61(626.22) 151.67(27.46) 149.62(22.58) 0.50(0.06) 0.65

Note that σ̂2
a and σ̂2

e denote estimated additive and residual variance; σ2
ĝ

denotes estimated genetic (Mendelian sampling) variance; ĥ2 denotes heritability (σ2
ĝ
/
(
σ2
ĝ
+ σ̂2

e

)
);

and SE denotes standard error, presented in parentheses.

can largely be ascribed to the models’ differential applica-
tions of shrinkage to random effects. Shrinkage, a process in-
fluenced by trait heritability, genetic architecture, and marker
density, is pivotal in striking a balance between the accu-
racy and precision of marker effect estimation. Supported by
several works (Habier et al., 2011; De Los Campos et al.,
2009; Meuwissen et al., 2001; Xu, 2003), our findings reveal
a more pronounced shrinkage towards zero in CAG-BLUP’s
estimated marker effects compared to in those of G-BLUP.
This difference is likely to reflect variations in the underlying
shrinkage parameters, which are determined by the variance
components (see σ̂ 2

a and σ̂ 2
e in Tables 2 and 3).

4.3 Integration of covariance structures

The use of covariance or correlation structures to account
for marker associations in GS is being increasingly recog-
nized for its potential to enhance genetic prediction accuracy
(Gianola et al., 2003; Martínez et al., 2017; Ramstein et al.,
2016; Wittenburg et al., 2016; Yang and Tempelman, 2012).
This approach, by acknowledging the complex interactions
among genetic markers, moves beyond the limitations of tra-
ditional models that assume marker independence and uni-
form variance. Our study leverages a covariance matrix, de-
veloped by Bonk et al. (2016), that is grounded in genetic
principles and that utilizes Haldane’s mapping function (Hal-
dane, 1919) to model LD between markers effectively. While
this methodology is similar to that proposed by Mathew et
al. (2017), it differs by avoiding iterative estimation meth-

ods, instead relying on a direct application of robust genetic
insights to estimate LD decay.

4.4 Equivalent models

Our study introduces the CAG-BLUP, GASI-BLUP, and
GASC-BLUP models, along with their marker-based equiva-
lents (see Appendices), highlighting the computational flexi-
bility that is crucial for addressing the diverse datasets in con-
temporary breeding programs. These models provide equiv-
alent predictive accuracy, allowing for strategic application
based on dataset characteristics – GRM-based models for
datasets with a high marker-to-individual ratio and marker-
based models for scenarios with more individuals than mark-
ers. This dual-strategy approach caters to the computational
needs of geneticists and breeders, ensuring the models’ ap-
plicability across various genomic prediction scenarios. The
adaptability of our models, underscored by their computa-
tional efficiency and the robustness in capturing genetic ar-
chitecture, enhances the practical utility of GS in breeding
and research, facilitating faster and more effective genetic
improvement efforts.

4.5 Empirical data validation

Validation against empirical data from a mouse backcross
study underscores the practical applicability of our models,
particularly in predicting genetic traits like cholesterol levels.
The observed variability in model performance highlights the
importance of model selection based on the genetic architec-
ture and heritability of the trait of interest. These real-world
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Figure 5. Estimated marker effect (a) and squared-marker effect (b) for cholesterol in empirical backcross data. Black dots indicate the top
10 % of markers with the largest effects.

applications confirm the models’ robustness and underscore
the potential for their integration into current breeding pro-
grams, paving the way for more precise genetic improve-
ments.

4.6 Limitations and future directions

Despite the clear benefits shown by our proposed models,
several factors may limit their immediate generalizability and
highlight potential avenues for further research. First, we fo-
cused on a controlled backcross (BC1) populations derived
from inbred parents, an approach that simplifies the underly-
ing LD structure but that may not capture the allelic diversity
of more advanced or heterogeneous populations. Second, by
centering primarily on additive effects and a finite number
of QTLs, we have not explored how dominance or epistasis
might influence genomic predictions, and we have not as-

sessed the performance of our models under fully polygenic
architectures. Addressing these interactions could be espe-
cially important for complex traits governed by numerous
small-effect loci. Third, while incorporating marker corre-
lation and unequal shrinkage has proven to be advantageous
in both simulated and empirical data, the ideal calibration
of these parameters across multiple chromosomes remains
computationally demanding and will require refinement for
large-scale breeding programs.

Moving forward, extending these methods to later back-
cross generations, multi-parent designs, and introgression
schemes will provide a more comprehensive evaluation of
their utility. Incorporating non-additive genetic effects – such
as dominance and epistasis – could offer a more realistic de-
piction of many agriculturally relevant traits. Further opti-
mization of shrinkage parameterization, potentially adopting
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chromosome-specific or segment-specific approaches, could
also enhance the models’ accuracy. Empirical validations
in species with different genome complexities and varying
population structures will ultimately clarify how well these
methodologies scale and adapt to diverse breeding scenar-
ios. By systematically addressing these limitations, future
research can strengthen the practical utility of CAG-BLUP,
GASI-BLUP, and GASC-BLUP, ensuring that their poten-
tial benefits translate into improved genetic gains across a
broader spectrum of breeding programs.

5 Conclusions

In this study, we introduced three new genomic prediction
models – CAG-BLUP, GASI-BLUP, and GASC-BLUP –
specifically tailored for backcross populations and demon-
strated their superiority over the traditional G-BLUP model
by more accurately accounting for genetic architecture, her-
itability, and marker density. GASI-BLUP excelled in sce-
narios with independent QTLs, leveraging unequal variance
allocation, while CAG-BLUP proved to be effective for de-
pendent QTLs and lower heritabilities through marker corre-
lation consideration. Validated with both simulated and em-
pirical data, these models affirm the critical role of model
selection in enhancing genomic prediction accuracy, offer-
ing significant advancements for breeding programs. This re-
search underscores the necessity of developing tailored GS
methodologies to improve genetic gains and to ensure food
security, laying the groundwork for future explorations to
broaden model applications and to integrate comprehensive
genetic effects.

Appendix A: Equivalent SNP-BLUP model

This Appendix presents the equivalent SNP-BLUP model
of the mixed linear model described in Eq. (3) in the main
text. The equivalence is crucial for understanding the com-
putational efficiency and theoretical underpinnings of the
CAG-BLUP model. The equivalent SNP-BLUP model for
the mixed linear model (Eq. 3) is expressed as follows:

y = 1µ+Zm+ e, (A1)

where y, 1, µ, and e are as previously defined in Eq. (3);
m is a p× 1 vector of marker effects; and Z is an n×p de-
sign matrix allocating records to marker effects. Further, m∼
N
(
0,Rσ 2

m

)
, where σ 2

m is the variance component of marker
effects, and R is the corresponding covariance matrix. For an
independent marker approach, we consider m∼N

(
0,Iσ 2

m

)
.

The estimates for µ and m can be computed by solving[
µ

m̂

]
=

[
1′1 1′Z
Z′1 Z′Z+R−1

· σ 2
e /σ

2
m

]−1[ 1′y
Z′y

]
. (A2)

The GEBVs can be obtained with

ĝ = Zm̂. (A3)

Appendix B: Proof of equivalence of linear models

This Appendix provides a detailed proof demonstrating the
equivalence of the mixed linear models described in Eq. (3)
and of the SNP-BLUP model (Eq. A1) from Appendix A.
The proof is critical for validating the assumptions and re-
sults presented in the main text.

According to Henderson (1985), two linear models are
equivalent if the E (y) and variance Var(y) of observations
are identical. Consider the following:

y = 1µ+Wg+ e, (B1)
y = 1µ+Zm+ e. (B2)

Both models have the same expected value, E (y)= 1µ.
To demonstrate the equality of variances, we use the fol-

lowing identity:

σ 2
a =G−1

CAG ·GCAG · σ
2
a

=G−1
CAG ·Var(g)

=G−1
CAG ·Var(Z ·m)

=G−1
CAG ·Z ·R ·Z

′
· σ 2
m

=G−1
CAG ·

Z ·R ·Z′

s
· s · σ 2

m

= s · σ 2
m. (B3)

Given W= I, the design matrix is as follows:

Var(Wg)=WGCAGW′ · δ2
a

=GCAG · δ
2
a

= (ZRZ′)/s · δ2
a

= ZRZ′ · δ2
m

= Var(Zm). (B4)

Appendix C: Equivalent SNP-BLUP model for
GASC-BLUP

This Appendix presents the equivalent SNP-BLUP model for
the GASC-BLUP method. The equivalence here is critical for
understanding the relationship between GASC-BLUP and its
SNP-level counterpart, highlighting the model’s flexibility
and adaptability.

The equivalent SNP-BLUP model for GASC-BLUP is for-
mulated as follows:

y = 1µ+Zsgmsg+Znsgmnsg+ e, (C1)

where msg and mnsg are vectors of marker effects for sig-
nificant and non-significant genome segments, respectively.
Zsg and Znsg are design matrices allocating records to the

marker effects of these segments. msg ∼N
(

0,Rsgσ
2
msg

)
and
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mnsg ∼N
(

0,Rnsgσ
2
mnsg

)
, where Rsg and Rnsg are the covari-

ance matrices, and σ 2
msg

and σ 2
mnsg

are the variance compo-
nents of marker effects for significant and non-significant
genome segments, respectively. For GASI-BLUP, we con-
sider msg ∼N

(
0,Iσ 2

msg

)
and mnsg ∼N

(
0,Iσ 2

mnsg

)
.

The estimates for µ, msg, and mnsg can be computed by
solving the following: µ

m̂sg
m̂nsg

=


1′1 1′Zsg 1′Znsg

Z′sg1 Z′sgZsg+Rsg ·
(
σ 2
e /σ

2
msg

)
Z′sgZnsg

Z′nsg1 Z′nsgZsg Z′nsgZnsg+Rnsg ·
(
σ 2
e /σ

2
mnsg

)

−1

 1′y
Z′sgy

Z′nsgy

 .
GEBVs are calculated by summing marker effects:

ĝsg = Zsgm̂sg

ĝnsg = Znsgm̂nsg. (C2)

Appendix D: Equivalence of GASC-BLUP and its
SNP-BLUP model

This Appendix demonstrates the theoretical equivalence
between GASC-BLUP and its corresponding SNP-BLUP
model. Establishing this equivalence is essential for validat-
ing the consistency and applicability of GASC-BLUP in ge-
nomic prediction analysis, particularly in the context of com-
plex genetic architectures. To establish the equivalence be-
tween GASC-BLUP and its SNP-BLUP model, consider the
following mixed linear models:

y = 1µ+Wgsg+Wgnsg+ e, (D1)
y = 1µ+Zsgmsg+Znsgmnsg+ e. (D2)

Both models share the same expected value, E (y)= 1µ.
For equivalence in variances, we use the following identity:

σ 2
asg
=G−1

CAGsg
·GCAGsg · σ

2
asg

=G−1
CAGsg

·Var
(
gsg
)

=G−1
CAGsg

·Var
(
Zsg ·msg

)
=G−1

CAGsg
·Zsg ·Rsg ·Z′sg · σ

2
msg

=G−1
CAGsg

·
Zsg ·Rg ·Z′sg

ssg
· ssg · σ

2
msg

= ssg · σ
2
msg
.

Considering W= I , we derive the following variance:

Var
(
W ·gsg

)
=W ·GCAGsg ·W

′
· σ 2
asg

=GCAGsg · σ
2
asg

=
Zsg ·Rsg ·Z′sg

ssg
· σ 2
asg

= Zsg ·Rsg ·Z′sg · σ
2
msg

= Var
(
Zsg ·msg

)
.

This proof demonstrates that the variance of the GASC-
BLUP model is identical to its SNP-BLUP equivalent, en-
suring the models’ theoretical consistency.
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