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Abstract. As the first and rate-limiting enzyme of the peroxisomal β-oxidation pathway, acyl-coenzyme A ox-
idase 1 (ACOX1), which is regulated by peroxisome proliferator-activated alfa (PPARα), is vital for fatty acid
oxidation and deposition, especially in the lipid metabolism of very long-chain fatty acids. Alternative splicing
events of ACOX1 have been detected in rodents, Nile tilapia, zebra fish and humans but not in goats. Herein,
we identified a novel splice variant of the ACOX1 gene, which was designated as ACOX1-SV1, in addition
to the complete transcript, ACOX1, in goats. The length of the ACOX1-SV1 coding sequence was 1983 bp,
which presented a novel exon 2 variation owing to alternative 5′-splice site selection in exon 2 and partial in-
tron 1, compared to that in ACOX1. The protein sequence analysis indicated that ACOX1-SV1 was conserved
across different species. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) anal-
ysis showed that these two isoforms were expressed spatially and differently in different tissue types. ACOX1
and ACOX1-SV1 were expressed at high levels in liver, spleen, brain and adipose tissue in kid goats, and they
were abundantly expressed in the fat, liver and spleen of adults. Interestingly, whether in kids or in adults, in
fat, the mRNA level of ACOX1 was considerably higher than that of ACOX1-SV1. In contrast, in the liver, the
expression of ACOX1-SV1 was considerably higher than that of ACOX1. This differential expression patterns
showed the existence of a tissue-dependent splice regulation. These novel findings for ACOX1 should provide
new insights for further studies on the function of ACOX1 and its variants that should aid in the breeding of
goats with improved meat quality.

1 Introduction

Goat meat is expected to assume greater importance in the
future owing to the rapidly growing world population and a
steady increase in the consumption of this meat (Henchion
et al., 2014); moreover, meat with better qualities and im-
proved flavor is desirable and demanded by consumers. The
Fuqing goat breed is one of the finest local breeds found on
the east coast of China and provides high-quality meat that
is tender and has only a slight odor. Nonetheless, research on
goat breeding for improving the quality of meat has lagged
behind that on pork and beef. Data on candidate genes that
affect the performance and quality of meat have largely been
lacking, warranting detailed studies in this direction.

The peroxisomal fatty acid β-oxidation pathway, which
is an essential metabolic pathway that operates in all eu-
karyotic cells (Kunau et al., 1995; Shi et al., 2016), is the
main metabolic destination of very long-chain fatty acids
(VLCFAs). This pathway plays a key role in the infants of
mammals, wherein lipids in the breast milk become the ma-
jor source of energy (Ehara et al., 2015). Importantly, this
pathway is regulated directly by the peroxisome proliferator-
activated receptor alfa (PPARα), which is a master transcrip-
tional regulator of the fatty acid metabolism (Poirier et al.,
2006).

Acyl-coenzyme A oxidase 1 (ACOX1) is the first and the
rate-limiting enzyme of the peroxisomal β-oxidation path-
way. It is mainly activated in peroxisome proliferators (a
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kind of organelle in the liver) and oxidizes long and medium
straight-chain fatty acid substrates (Poirier et al., 2006; Wang
et al., 2014). A deficiency of this enzyme leads to severe mi-
crovesicular steatohepatitis in mice (Fan et al., 1998; Yu et
al., 2003). The lack of both ACOX1 and PPARα causes the
absence of spontaneous hepatic peroxisome proliferation in
aged mice (Hashimoto et al., 1999; Tanaka et al., 2017), high-
lighting the close connection between ACOX1 and PPARα. In
humans, the absence of ACOX1 is associated with pseudo-
neonatal adrenoleukodystrophy (P-NALD), which is a disor-
der of the peroxisomes (El Hajj et al., 2012). The ACOX1
gene holds great promise as a potential target for improv-
ing meat performance in pig and cattle. For instance, an A/C
polymorphism in intron 9 was found to be significantly as-
sociated with fat deposition in pig (Zuo et al., 2007), and the
other one (A1865C) in exon 13 was significantly related to
back fat thickness and marbling score in cattle, as evidenced
from ultrasound imaging (Jiao et al., 2011). These observa-
tions point to the critical role of ACOX1 in the fatty acid
metabolism and suggest its potential functions in affecting
the development and deposition of fat.

Alternative splicing (AS), which exists in almost all kinds
of mammals (Kelemen et al., 2013), is a fundamental molec-
ular event that results in the production of different mature
transcripts from the same primary RNA sequence (Sammeth
et al., 2008). These transcripts contribute to diverse biolog-
ical processes, such as cell differentiation (Kianianmomeni
et al., 2014; Cotter et al., 2015), disease development (So-
hail et al., 2014) and the adipocyte metabolism (Fiszbein et
al., 2017). Previous studies reported that the splicing vari-
ants of PPARG (PPARG1 and PPARG2) could affect the
lipogenesis of mammary tissue via the upregulated expres-
sions of key lipogenic gene networks (Shi et al., 2014). The
different transcripts of the SFRS18 gene (SFRS18_V1 and
SFRS18_V2) were revealed to correlate with intramuscular
fat content in pigs (Wang et al., 2009). Thus, AS may af-
fect meat quality by regulating the expressions of key genes
within the myocyte and adipocyte metabolism, especially the
intramuscular lipocyte generation. Splicing variants of the
ACOX1 gene were detected in Nile tilapia (He et al., 2014),
mice (Vluggens et al., 2010) and humans (Oaxaca-Castillo
et al., 2007); however, they have not been reported in goats.
These studies all lend credence to the notion that the ACOX1
gene plays fundamental roles in meat quality. Therefore, this
study aims to explore potential splicing transcripts of the goat
ACOX1 gene and the tissue expression pattern in kid and
adult goats, which would be of benefit for further study on
the function of the ACOX1 gene and breeding programs in
goats.

2 Materials and methods

Experimental animals and procedures used in this study were
approved by the International Animal Care and Use Commit-

tee of the Fujian Academy of Agricultural Sciences (FAAS),
Fujian province, China. The care and use of experimental an-
imals fully complied with local animal welfare laws, guide-
lines and policies.

2.1 Animals and tissue collection

Seven Fuqing goats (four adult wethers and three female
kids (lactation period)) were fed and slaughtered in the goat
breeding farm of FAAS. Because the development of gonads
in goats does not begin during the lactation period, the ex-
periments would not be influenced by gender. Nine types of
tissue were collected for the study: heart, liver, spleen, lung,
kidney, leg muscle, the longissimus muscle, perirenal fat and
brain. All the samples were snap-frozen in liquid nitrogen
and subsequently stored at −80 ◦C.

2.2 Total RNA isolation, first-strand cDNA synthesis and
cDNA pool construction

Total RNA was isolated from the collected tissue samples us-
ing an RNA extraction kit and RNase-free DNase I (TaKaRa,
Dalian, China). The genomic DNA was removed by treat-
ment with RNase-free DNase I, and the quality of RNA
was determined using a NanoDrop 1000 spectrophotome-
ter (Thermo Fisher Scientific Inc., Wilmington, DE) and
1 % agarose gel electrophoresis (Li et al., 2013). Reverse-
transcription polymerase chain reaction (RT-PCR) was per-
formed to synthesize complementary DNA (cDNA) using
a PrimeScript™ RT reagent Kit (TaKaRa), according to the
manufacturer’s recommended procedure (S. H. Zhang et al.,
2016).

2.3 Identification of ACOX1 alternative splice variants

The primers were designed, based on the predicted goat
ACOX1 mRNA sequence (XM_013972412.1), using Primer
Premier 5 software (Premier BioSoft, Palo Alto, CA, USA);
the sequences of the primers are shown in Table 1. A pair
of primers (P1) was designed for the identification of dif-
ferent splice transcripts in the goat ACOX1 gene (Table 1).
The polymerase chain reactions (PCRs) were performed as
described in our previous study (X. Y. Zhang et al., 2015).

2.4 Clone sequencing and validation of ACOX1
transcript variants

The PCR products were separated by electrophoresis on
agarose gel and were cloned into a pGEM-T easy vec-
tor (Promega, Shanghai, China) after purification. The re-
combinant vector thus obtained was then transferred to Es-
cherichia coli DH5α competent cells (TaKaRa) and se-
quenced (X. Y. Zhang et al., 2016).
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Table 1. Sequences of PCR primers used for amplification of the goat ACOX1 gene.

Loci
Primer sequences (5′→3′) Tm Sizes

Amplified region
(nucleotide position) (◦C) (bp)

P1 F: CGGCCGTCACCATGAATCA 60 2065 Entire CDS region and
R: CGCAGTTTGTGTGACAGGTG AS variants for RT-PCR

P2 F: CGTAGCCAGCGTTATGAGGT 60 220 EX1, EX2 for RT-qPCR
R: TCCAGGCAGGCATGAAGAAG (ACOX1)

P3 F: TTTGGCATCGCAGATCCTGA 60 119 EX1, INS2 for RT-qPCR
R: GTGCCCTGATTCAGCAAGGT (ACOX1-SV1)

P4 F: TGTTTGTGATGGGCGTGAACCA 50 142 EX5, EX6, EX7 for RT-qPCR
R: ATGGCGTGGACAGTGGTCATAA (GAPDH)

Note: NCBI reference sequence NC_022311.1.

2.5 Bioinformatics analysis

DNA and amino acid sequences were aligned using
MEGA 5.1 (http://www.megasoftware.net/) and BioXM 2.6
(Nanjing Agricultural University). Phylogenetic trees were
constructed using the neighbor-joining method implemented
in MEGA (Lee et al., 2014) and by using NCBI pairwise
alignments (http://www.ncbi.nlm.nih.gov/blast).

2.6 Measurement of ACOX1 and ACOX1-SV1 mRNA
levels using quantitative real-time PCR

The specific primers used for reverse-transcription quanti-
tative real-time polymerase chain reaction (RT-qPCR) were
shown in Table 1. RT-qPCR was performed with Eastep®

qPCR Master Mix Kit (Promega) in an Eppendorf Master-
cycler ep Realplex 4 Real-Time PCR system. The RT-qPCR
reaction system was implemented as described in our previ-
ous study (X. Y. Zhang et al., 2015). The steps in RT-qPCR
were as follows: denaturation at 95 ◦C for 30 s, followed by
39 cycles of 15 s at 95 ◦C, and 50 s at 63 ◦C. The individual
samples were amplified in triplicates, and a no-template con-
trol (NTC) was included (which contained ddH2O instead of
cDNA template).

2.7 Statistical analysis

The popular 2−11Cq method was used to calculate the
variations in the expression levels; GAPDH was used as
the reference gene (Livak et al., 2001). The reactions in
which water was used instead of the template were re-
garded as NTCs. The calculation in the 2−11Cq method
was performed using the following formula: ratio= 2−11Cq ,
where −11Cq = GEOMEAN(Cq ·ACOX1/ACOX1-SV1)−
Cq ·GAPDH (Bustin et al., 2009). Nine tissue samples were
used for the two variants. Three individuals were used for
each tissue and different isoforms were detected from the
same individual for each tissue. Statistical differences be-
tween the expression levels of the different ACOX1 isoforms

were analyzed by Student’s t test using the SPSS 18.0 soft-
ware. The values with uppercase letters indicate statistical
significance at P < 0.01 and those with lowercase letters in-
dicate statistical significance at P < 0.05.

3 Results

3.1 Identification of a novel transcript of the ACOX1
gene

The cDNAs prepared from the samples obtained from the
kids and adults were pooled and the ACOX1 CDS was ampli-
fied using Primer P1 (Fig. 1a). The amplified products were
cloned and sequenced. We detected the presence of the full-
length CDS of two ACOX1 isoforms: the known ACOX1
transcript (XM_013972412.1) and a novel variant, named
ACOX1-SV1 (GenBank Accession number: KX828848).
The coding sequences of both ACOX1 and ACOX1-SV1
were 1983 bp in length (Fig. 2a), comprising 13 exons. How-
ever, ACOX1-SV1 was different from the ACOX1 transcripts,
which had a novel exon 2 variation owing to an alterna-
tive 5′ splice site selection of exon 2 and partial intron 1
(NC_022311.1 nt4020–4120) (Fig. 1b).

3.2 Bioinformatics analysis of ACOX1 and ACOX1-SV1

The alignment of the ACOX1 and ACOX1-SV1 sequences
(having the same number of amino acids) revealed a
40-amino acid (aa) difference (Fig. 2b). The amino acid
sequence of goat ACOX1-SV1 was observed to share
95, 94, 92, 91, 91, 88, 88, 86, 85 and 82 % similar-
ity with the corresponding sequences from Bos taurus
(NP_001030366.1), Ovis aries (XP_014954428.1), Bubalus
bubalis (XP_006045337.1), Bos mutus (XP_005908024.1),
Equus caballus (XP_003362535.1), Pan troglodytes
(XP_511690.2), Homo sapiens (NP_004026.2), Sus scrofa
(NP_001094498.1), Rattus norvegicus (NP_059036.1)
and Mus musculus (NP_056544.2). In the Basic Local
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Figure 1. Detection of different isoforms (ACOX1, ACOX1-SV1) of ACOX1 in goats and schematic of genomic structure. (a) Electrophore-
sis of the products obtained by RT-PCR of the mixed cDNA pool; (b) goat ACOX1 (XM_013972412) was used as the reference sequence in
the diagram. Note: basic exons are shown in white boxes and alternatively spliced intron regions are shown in black box. Lines represent the
basic introns. Positions of the primers P2 and P3 for RT-qPCR of the ACOX1 and the ACOX1-SV1 transcript variants.

Alignment Search Tool (BLAST) search using the CDS
of goat isoforms as queries, we detected a high degree of
similarity of the goat ACOX1 (XM_013972412) with the
functional human counterpart, ACOX1b (NM_004035.6),
and that of ACOX1-SV1 (KX828848) with human ACOX1a
(NM_007292.5) (Fig. 3a and b) (Vluggens et al., 2010).
Moreover, the splice site of goat 121-nucleotide sequence in
ACOX1-SV1 was highly similar (99.2 %) to that of human
ACOX1a isoform.

A phylogenetic tree was constructed based on the ACOX1-
SV1 sequence for studying evolutionary relationships. It was
observed that the goat ACOX1-SV1 was conserved in differ-
ent species; it was closest to B. taurus ACOX1 and most dis-
tant from the clade comprising sequences from R. norvegicus
and M. musculus (Fig. 4).

3.3 Relative and differential expression of ACOX1 and
ACOX1-SV1 in different tissue types from different
goat groups

The expression profiles of ACOX1 and ACOX1-SV1 were
determined using semiquantitative RT-PCR in both the kids
and adults. ACOX1 was observed to be expressed only in six
tissue types, namely heart, liver, spleen, the longissimus mus-
cle, fat and brain (Fig. 5a). However, the ACOX1-SV1 iso-
form was detected in all of the collected tissue (heart, liver,
spleen, lung, kidney, leg muscle, longissimus muscle, fat and
brain) (Fig. 5b).

RT-qPCR was performed to determine the mRNA lev-
els of the two isoforms in the experimental tissue samples
(ACOX1: six tissue samples; ACOX1-SV1: nine tissue sam-
ples) collected from the two groups (Fig. 6). For kid goats,
the expression of ACOX1 in the longissimus muscle was
the lowest (P < 0.05) (Fig. 7a). The mRNA level of ACOX-
SV1 was significantly higher in liver, spleen, kidney and lung
samples than in the other tissue types (P < 0.05), followed
by adipose tissue, the brain and the heart. Moreover, its ex-
pression in the leg muscle and longissimus muscle was low
(Fig. 7c). In the adults, the ACOX1 expression level was the
highest in adipose tissue; it was much higher in the spleen
and liver compared to the levels in the heart, brain and longis-
simus muscle (P < 0.01) (Fig. 7b). The expression of the
ACOX1-SV1 isoform was highest in the liver, followed by
that in the spleen, lung and kidney. Moreover, the expres-
sion of ACOX1-SV1 in the brain, adipose tissue, the heart,
the leg and the longissimus muscle was also low (Fig. 7d).
Overall, in kids, the two isoforms had a relatively higher ex-
pression in the liver, the spleen, the brain and adipose tis-
sue and displayed low levels of expression in the heart and
longissimus muscle. In adult individuals, the expression of
the two isoforms was totally different in liver and adipose
tissue; the mRNA level of ACOX1 was much higher than
that of ACOX1-SV1 (P = 0.001), whereas in the liver the
expression of ACOX1-SV1 was higher than that of ACOX1
(P = 0.02). Both the transcripts are expressed moderately in
the spleen and weakly in the heart, brain and longissimus
muscle.
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Figure 2. Alignment of nucleotide (a) and protein sequences (b) of ACOX1 and ACOX1-SV1 variants.
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Figure 3. Sequence alignment of ACOX1 transcript variants from goat and human. (a) ACOX1 XM_013972412 is aligned with human
ACOX1b NM_004035.6; (b) ACOX1-SV1 KX828848 is aligned with human ACOX1a NM_007292.5). Note: the gray uppercase letters
represent the sequence of the novel exon 2 variation event in ACOX1-SV1. Boxes represent the initiation and termination codons.
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Figure 4. Phylogenetic tree of ACOX1-SV1 made by MEGA 5.1. Note: the tree was constructed based on amino acid similarities of the full
mRNA sequences by MEGA 5.1. The accession numbers and description of the sequences used for the construction of the tree were shown
in Table 2. The numbers on the joints were bootstrap test values, and the branch length represents the evolutionary time.

Figure 5. The mRNA expression patterns of ACOX1 (a), ACOX1-SV1 (b) and GAPDH from various tissue types in the groups of kids and
adults. Note: lanes (Ln) 1 – heart; Ln 2 – liver; Ln 3 – spleen; Ln 4 – lung; Ln 5 – kidney; Ln 6 – leg muscle; Ln 7 – longissimus muscle;
Ln 8 – adipose; Ln 9 – brain; Ln 10 – NTC. Marker: marker I.
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Figure 6. Melt peak (a) and melt curve (b) chart of ACOX1, ACOX1-SV1 and the reference gene GAPDH for RT-qPCR.

Figure 7. Relative ACOX1 and ACOX1-SV1 mRNA levels in the kids (a, c) and adults (b, d), and differential expression levels of two
different transcripts in various tissue types of kids (e) and adults (f). Note: gene expression was normalized using GAPDH as a reference
gene. Uppercase letters represent statistical significance at P < 0.01, and lowercase letters represent the statistical significance at P < 0.05.

Arch. Anim. Breed., 61, 59–70, 2018 www.arch-anim-breed.net/61/59/2018/



X.-F. Wu et al.: Novel alternative splicing variants of ACOX1 and their differential expression patterns in goats 67

Table 2. Accession numbers and description of the amino acid se-
quences used in tree building.

Accession number Description Sizes
KX828848 Capra hircus ACOX1-SV1 660
XP_014954428.1 Ovis aries ACOX1 isoform X1 660
NP_001030366.1 Bos taurus ACOX1 660
XP_006045337.1 Bubalus bubalis ACOX1 isoform X1 660
XP_005908024.1 Bos mutus ACOX1 isoform X1 661
XP_003362535.1 Equus caballus ACOX1 isoform X1 660
NP_059036.1 Rattus norvegicus ACOX1 isoform X1 660
NP_056544.2 Mus musculus ACOX1 isoform X1 660
NP_001094498.1 Sus scrofa ACOX1 660
XP_511690.2 Pan troglodytes ACOX1 isoform X1 660
NP_004026.2 Homo sapiens ACOX1 isoform a 660

4 Discussion

As a major mechanism for the expansion of transcriptome
and proteome diversity (Bush et al., 2017), AS is a princi-
pal contributor to the evolution of phenotypic complexity in
mammals. This type of evolution was also demonstrated for
the ACOX1 gene, a rate-limiting and relatively conserved en-
zyme in the peroxisomal fatty β-oxidation pathway. Several
studies revealed similar sequences in other vertebrates, such
as rodents, Nile tilapia, zebra fish and humans (Iyazawa et al.,
1987; Morais et al., 2007; He et al., 2014). The ACOX1 tran-
scripts were abundant in liver, adipose and kidney tissue. In
this study, a novel splice variant, ACOX1-SV1 (KX828848),
was first identified in goats; this variant was remarkably
conserved in different species. Sequence alignment illus-
trated that the sequence of ACOX1-SV1 was highly similar
to that of its human functional isoform, ACOX1a (Fig. 3b)
(Vluggens et al., 2010), and ACOX1 was homologous to hu-
man ACOX1b (Fig. 3a). Splice variants of human ACOX1
(ACOX1a and 1b) were reported to be critical regulators in
the fatty acid metabolism (Varanasi et al., 1994; Baes and
Van Veldhoven, 2012), indicating that these variants were es-
sential for the lipid metabolism in goats.

Interestingly, both the ACOX1 and ACOX1-SV1 variants
were expressed spaciously and differently in the collected tis-
sue samples. The mRNA levels of ACOX1 and ACOX1-SV1
were extremely different in the liver and fat, respectively. In
liver tissue, ACOX1 had a moderate expression level, and the
expression of ACOX1-SV1 was excellent in kid and adult
goats, being 1.5 times higher than that of ACOX1 (Fig. 7e
and f). Based on the results in humans, ACOX1 and ACOX1-
SV1 might work as a dimer. Furthermore, the proteins en-
coded by these two isoforms should have critical functions
in reducing PPARα activation and should subsequently af-
fect the fatty acid metabolism in goats. The human ACOX1b
isoform (compared to the goat ACOX1) reversed the ACOX1
null mice fatty liver phenotype (Oaxaca-Castillo et al., 2007).
We, therefore, speculated that goat ACOX1 was the primary
transcript used in the hepatic lipid metabolism of VLCFAs.

Accordingly, ACOX1 and ACOX1-SV1 isoforms have a high
probability of being the key regulators of the metabolism of
VLCFAs in goats.

The ACOX1 isoform had high expression levels in fat
when goats became mature. In contrast, the ACOX1-SV1
mRNA was rarely expressed in both the kid and adult indi-
viduals, suggesting that the ACOX1 isoform not only played
a key role in the hepatic fatty acid metabolism but might also
greatly affect the adipocyte differentiation and deposition of
fat in goats. From the published reports, ACOX1 proteins are
known to regulate adipose differentiation and are implicated
in obesity (Baranova et al., 2013). They are used as markers
of lipogenesis for RT-qPCR (Palou et al., 2009; Flachs et al.,
2005). Furthermore, the expression level of ACOX in adults
was considerably higher than that in kids, which could be
explained by adipose deposition leading to a peak in expres-
sion after the individuals mature. In contrast, ACOX1-SV1 is
likely to be involved in the hepatic fatty acid metabolism. The
differential expression of ACOX1 and ACOX1-SV1 shows
the existence of tissue-dependent splice regulation, which al-
lowed for evolutionary selection (Kelemen et al., 2013).

The mRNA levels were found to change in the brain. In
kid goat, ACOX1 and ACOX1-SV1 were abundantly ex-
pressed in the brain, whereas their expression was decreased
in adults. Beyond their role in the lipid metabolism, ACOX1
and ACOX1-SV1 are involved in the synthesis of docosa-
hexaenoic acid (DHA), which is best represented polyunsat-
urated fatty acid (PUFA) in brain and nervous tissue and is
critical for the extension of neuronal axons and in neuronal
processes (Trompier et al., 2014). When ACOX1 is mutated,
the plasma level of DHA is reduced (Baes and Van Veld-
hoven, 2012) and the neurological development of the in-
fant dramatically deteriorates (Masson et al., 2016). The sug-
gested transcripts of the ACOX1 gene were thus crucial in the
development of the brain in kid goats.

In conclusion, two alternative splice variants of ACOX1
(ACOX1 and ACOX1-SV1) were identified in kid and adult
goats, and they were found to express at high levels in the
liver, spleen, brain and fat tissue of kids. In adult individu-
als, the two isoforms were expressed at high levels in fat, the
liver and the spleen. In both the cases lipid conversion and
deposition were observed to be important factors involved in
meat performance. These findings would provide a founda-
tion for further investigation of the functions of ACOX1 and
its variants in goat breeding, especially in the improvement
of meat quality.

Data availability. The splice variant (ACOX1-SV1) that we have
found has been uploaded to the National Center for Biotechnol-
ogy Information (NCBI) Nucleotide Database (GenBank, accession
number: KX828848), available at: https://www.ncbi.nlm.nih.gov/
nuccore/KX828848 (Wu, 2017). The sequencing data of ACOX1-
SV1 are provided in the Supplement.
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Appendix A: Abbreviations

ACOX acyl-coenzyme A oxidase
ACOX1 acyl-coenzyme A oxidase 1
ACOX1-SV1 acyl-coenzyme A oxidase 1 splice variant 1
GAPDH glyceraldehyde 3-phosphate dehydrogenase
PPARα peroxisome proliferator-activated receptor alfa
P-NALD pseudoneonatal adrenoleukodystrophy
VLCFAs very long-chain fatty acids
AS alternative splicing
mRNA messenger RNA
CDS coding sequence
cDNA complementary DNA
PCR polymerase chain reaction
RT-PCR reverse-transcription polymerase chain reaction
RT-qPCR reverse-transcription quantitative real-time polymerase chain reaction
aa amino acid
bp base pair
Cq quantification cycle
SD standard deviation
NCBI National Center for Biotechnology Information
BLAST Basic Local Alignment Search Tool
DHA docosahexaenoic acid
PUFA polyunsaturated fatty acid
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/aab-61-59-2018-supplement.
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