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Abstract. The accuracy of genomic prediction of quantitative traits based on single nucleotide polymorphism
(SNP) markers depends among other factors on the allele frequency distribution of quantitative trait loci (QTL).
Therefore, the aim of this study was to investigate different QTL allele frequency distributions and their effect
on the accuracy of genomic estimated breeding values (GEBVs) using best linear unbiased genomic predic-
tion (GBLUP) in simulated data. A population of 1000 individuals composed of 500 males and 500 females as
well as a genome of 1000 cM consisting of 10 chromosomes and with a mutation rate of 2.5× 10−5 per locus was
simulated. QTL frequencies were derived from five distributions of allele frequency including constant, uniform,
U-shaped, L-shaped and minor allele frequency (MAF) less than 0.01 (lowMAF). QTL effects were generated
from a standard normal distribution. The number of QTL was assumed to be 500, and the simulation was done
in 10 replications. The genomic prediction accuracy in the first-validation generation in constant, and the uni-
form allele frequency distribution was 0.59 and 0.57, respectively. Results showed that the highest accuracy of
GEBVs was obtained with constant and uniform distributions followed by L-shaped, U-shaped and lowMAF
QTL allele frequency distribution. The regression of true breeding values on predicted breeding values in the
first-validation generation was 0.94, 0.92, 0.88, 0.85 and 0.75 for constant, uniform, L-shaped, U-shaped and
lowMAF distributions, respectively. Depite different values of regression coefficients, in all scenarios GEBVs
are biased downward. Overall, results showed that when QTL had a lower MAF relative to SNP markers, a low
linkage disequilibrium (LD) was observed, which had a negative effect on the accuracy of GEBVs. Hence, the
effect of the QTL allele frequency distribution on prediction accuracy can be alleviated through using a genomic
relationship weighted by MAF or an LD-adjusted relationship matrix.

1 Introduction

Recent developments in sequencing technologies are mak-
ing genome-wide high-density single nucleotide polymor-
phism (SNP) marker data accessible for livestock species.
This information along with phenotypic data can be used
to determine genomic estimated breeding values (GEBVs).
The idea of predicting breeding values by molecular mark-
ers was first proposed by Nejati-Javaremi et al. (1997), and
Meuwissen et al. (2001) further upgraded and propagated
this method, which is employed for the genomic selec-
tion (GS) of animals. To date, simulation studies and exper-

imental studies on GS have indicated that prediction accura-
cies of GS are adequate to allow rapid gains from selection,
especially in dairy cattle (Hayes et al., 2009; VanRaden et al.,
2009).

The accuracy of GEBVs depends on numerous issues in-
cluding the number of quantitative trait loci (QTL), their lo-
cations in the genome, the distribution of allele frequencies,
the effect sizes of QTL, the linkage disequilibrium (LD) be-
tween QTL and SNPs, the mode of gene action, the statis-
tical method used for the estimation of marker effects, the
size of reference population, the degree of relationship be-
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Table 1. Population structure and simulated parameters.

Parameter Value

Number of chromosomes 10
Number of SNP markers per chromosome 1000
Genome length 1000 cM
Number of QTL per chromosome 50
Mutation rate per QTL 2.5× 10−5

Distribution of additive QTL effects Normal
Distribution of QTL allele frequency Constant, uniform, L-shaped, U-shaped, lowMAF
Base population size:
– male 100
– female 100
Number of historical generations 500
Reference set All individuals of generation 502

(1000 individuals – 500 males
and 500 females)

Validation set All individuals of generation 503 to 505
(3000 – including 1500 males
and 1500 females)

Heritability 0.5

tween reference and validation population and marker den-
sity (Meuwissen et al., 2001; Solberg et al., 2008; Goddard,
2009). There are some studies that discuss the impact of ge-
netic architecture, in particular, the effect of allele frequen-
cies on the genomic prediction accuracy (Wientjes et al.,
2015; Abdollahi-Arpanahi et al., 2014a; Daetwyler et al.,
2013). Daetwyler et al. (2013) reported that QTL allele fre-
quency had an important impact on accuracy of genomic pre-
dictions. Furthermore, Uemoto et al. (2015) argued that the
accuracy of GEBVs changes with respect to different mi-
nor allele frequency (MAF) of QTL. Wientjes et al. (2015)
demonstrated that allele frequency spectra of QTL and the
distribution of QTL effects are essential factors that deter-
mine the accuracy of both single- and multibreed genomic
predictions. Abdollahi-Arpanahi et al. (2014a) found that the
predictive ability of quantitative traits in broiler chickens was
affected by the different categories of SNPs formed accord-
ing to allele frequency. They indicated that SNPs with a low
MAF delivered better predictive ability than SNPs with a
high MAF, and those markers produced models with better
goodness of fit statistics.

Hill et al. (2008) indicated that under strong artificial se-
lection along with rare mutations and the balance between se-
lection and drift, the distribution of the QTL allele frequency
is more likely L-shaped or U-shaped.

Even though some studies already investigated the impact
of QTL or SNP allele frequency on genomic prediction accu-
racy, they have assessed limited ranges of QTL allele spectra
(Daetwyler et al., 2013; Uemoto et al., 2015). Therefore, in
the current study simulated data were used to verify the ef-
fect of a wide range of QTL allele frequency distributions
including constant, uniform, L-shaped, U-shaped and QTL

distributions with a MAF of less than 0.01 (lowMAF) on the
accuracy of genomic prediction.

2 Materials and methods

2.1 Simulation

A genome consisting of 10 chromosomes with a length
of 1000 cM was simulated with a per-site mutation rate
of 2.5× 10−5 using R version 3.2.4 language/environment
(R Core Team, 2016). The R package hypred version 0.1
(Technow, 2011) was modified to simulate the population.
Genetic recombination was performed using functions ob-
tained from the hypred package. One thousand SNPs were
equally spaced over each chromosome. In the first genera-
tion, the initial allele frequencies of all SNPs were assumed
to be 0.5. Two hundred individuals, including 100 males and
100 females, were generated as base population. Sires and
dams in the base population were assumed to be unrelated.

To generate a sufficient level of LD and provide the sim-
ulation with a pragmatic population structure, the base pop-
ulation was followed by 500 generations of random mating
with an effective population size (Ne) of 200 (100 males and
100 females). Sire and dams were sampled with replacement
and Ne was kept constant across generations. The number of
individuals expanded to 1000 during two generations (501–
502). Generation 502 was assumed as a reference population,
and three more generations (503 to 505) were considered as
validation populations. Parameters used for the simulation of
populations and genome are shown in Table 1.

Five scenarios of QTL allele spectrum including constant,
uniform, L-shaped, U-shaped and QTL distribution with a
MAF less than 0.01 (lowMAF) were considered. The de-
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Figure 1. The distributions of QTL allele frequency. (a) Constant, (b) uniform, (c) L-shape, (d) U-shape and (e) lowMAF.

scription of the first four QTL allele frequency distributions
is provided in Abdollahi-Arpanahi et al. (2014b). To achieve
the desired QTL allele frequency distribution, 500 SNPs
were picked up from whole pool of SNPs available in the last
historical generation (500th generation), and they were iden-
tified as QTL. For instance, to create a constant QTL allele
frequency, 500 SNPs with allele frequencies near 0.5 were
considered as QTL. In uniform distribution, QTL allele fre-
quency ranged between 0 and 1; in this case, first, SNPs were
categorized based on their frequency and then an equal num-
ber of SNPs from each category were selected as QTL. For
L- and U-shaped distributions, the chance of each SNP to be
marked as QTL depends on its frequency (p). For example,
in L-shaped distributions, the chance is equal to 1/p, and in
U-shaped situations for 50 % of loci, the chance of “1”-allele
was 1/p and for the other 50 % of loci, the chance of another
allele, “2”-allele, was 1/(1−p). Consequently, the QTL al-
lele frequency distribution became U-shaped. For a lowMAF
scenario, SNP markers with a MAF of less than 0.01 were
marked as QTL. So, the average MAF in this scenario was
lower than L-shaped and U-shaped QTL allele frequency dis-
tributions (Fig. 1e). The realized distribution of the QTL al-
lele frequency is given in Fig. 1. In all scenarios, QTL were
uniformly distributed across the genome.

Each distribution of the QTL allele frequency according to
its shape has a different average MAF (Table 2).

Table 2. Average of the MAF in different distributions of the QTL
allele frequency.

QTL allele Average Standard
frequency deviation

Constant 0.49 0.01
Uniform 0.25 0.15
L-shaped 0.05 0.08
U-shaped 0.05 0.08
LowMAF 0.01 0.01

After all QTL effects (α′) were generated from a
standard normal distribution, their effects were stan-
dardized to achieve a total genetic variance of 1, i.e.

αq =
α′q√∑

i

2pi (1−pi )(α′i )
2
, where subscripts i(q) denote the

ith(qth) QTL; the summation is over all QTL; α is the stan-
dardized value of the additive effect of QTL (Meuwissen and
Goddard, 2010). The genetic value, AQTLqj , of individual j
at locus q in the population is

AQTLqj =mq +
(
xqj − 1

)
αq , (1)

where mq is the mid-homozygote value at locus q, xqj is the
number of high alleles (0, 1, or 2) of individual j at locus q,
and αq is the additive allele effect at locus q (Bost et al.,
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2001). The true genetic value (TBV) of individual j for the
trait is computed under an additive model as

TBVj =
nQTL∑
q=1

AQTLqj . (2)

The phenotype of each individual was generated by adding
its genetic value to a normally distributed error: N (0, σ 2

g

(1−h2)/h2), where h2 is the heritability. The simulation pro-
gram was repeated 10 times.

2.2 Statistical model

The reference set data were analysed by the genomic best lin-
ear unbiased prediction (GBLUP) method with the following
model:

y = 1µ+g+ e, (3)

where y is the vector of individual phenotypes; µ is the inter-
cept, and 1 is a vector of ones; g∼N (0, Gσ 2

g ) is the random
vector of additive genetic values; G is a matrix of additive
genomic relationships; σ 2

g is the genetic variance; e∼N (0,
Iσ 2
e ) is the vector of model residuals, where σ 2

e is the resid-
ual variance and I is an identity matrix. A typical element
of G was calculated as VanRaden (2008).

Gjj ′ =
1
m

m∑
i=1

(
xij − 2pi

)(
xij ′ − 2pi

)
2pi (1−pi)

,

where xij is the number of copies of the reference allele for
the ith SNP in the j th individual, pi is the frequency of the
reference allele obtained from the current sample, and m is
the number of markers.

The prediction of breeding values for individuals in val-
idation set (ĝval) was as below (Abdollahi-Arpanahi et al.,
2015):

E
[
gval|ĝref

]
=Gval,refG−1

ref ĝref = ĝval, (4)

where ĝref is vector of predicted genetic values on reference
set individuals; Gval,ref is rectangular matrix of genomic re-
lationships between individuals in validation and reference
samples, and Gref is the genomic relationship between refer-
ence set individuals.

The accuracy of predicted genomic breeding values were
obtained from correlation between true breeding values and
predicted breeding values. Although the correlation between
predicted breeding values and true breeding values is the
common criterion to measure the accuracy of evaluations,
the regression of true breeding values on predicted breeding
values is another index for assessing the prediction accuracy
(Daetwyler et al., 2013). The true breeding values were lin-
early regressed on the predicted GEBV, where the regression
coefficient reflected the degree of bias of the GEBV predic-
tion. A regression of true breeding values on predicted breed-
ing values of 1 indicates no bias. Correlation and regression

Figure 2. Accuracy of genomic estimated breeding values using
genomic best linear unbiased prediction for different distributions of
the QTL allele frequency. The whiskers represent 95 % asymptotic
confidence intervals.

of GEBVs for the three validation generations were evalu-
ated. The simulated data sets were replicated 10 times.

3 Results and discussion

3.1 Accuracy of prediction

In the first-validation generation the mean of obtained ac-
curacy (0.53) from all scenarios was lower than the ex-
pected accuracy (0.70) according to the formula derived by
Daetwyler et al. (2010). The accuracy of GEBVs in dif-
ferent distributions of the QTL allele frequency is given in
Fig. 2. Results showed that in all scenarios and generations,
the accuracy of genomic prediction for a constant allele fre-
quency distribution was highest and was followed by uni-
form, U-shaped, L-shaped and lowMAF allele frequency dis-
tributions.

The accuracy in the first-validation generation in con-
stant, and the uniform allele frequency distribution was 0.59
and 0.57. When the distribution of the QTL allele frequency
was U-shaped, the accuracy was 9 and 6 % lower compared
to the constant and uniform allele frequency, respectively. A
similar trend was observed for L-shaped allele frequency. For
lowMAF, this reduction in accuracy was slightly more and
15 % lower than the constant allele frequency.

As shown in Table 2, the mean MAF was different in dif-
ferent distributions of QTL allele frequencies. Wientjes et
al. (2015) showed that when QTL have lowMAF, the ac-
curacy of breeding values is also low. Results of this study
are in agreement with those findings. Daetwyler et al. (2013)
simulated several traits with a MAF of QTL less than 0.10
and found that the accuracy ranged from 0.45 to 0.50, while
without this constraint, accuracy varied from 0.53 to 0.55.
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That study reported that this reduction in accuracy was gen-
erally observed for all genomic evaluation methods.

The LD between adjacent markers in generation 500, cal-
culated using r2 statistics, was equal to 0.24 in an average
of 10 replicates. The mean of r2 between QTL and adja-
cent markers was affected by the allele frequency distribution
of QTL (Table 3). When QTL allele frequency distribution
was constant the highest r2 was observed, and the lowest r2

was obtained with lowMAF scenario. In line with our find-
ings, Uemoto et al. (2015) classified QTL according to aver-
age MAF, and showed that as the mean MAF decreased, the
amount of LD between SNPs and QTL reduced, and it led to
the decrease in the accuracy of genomic predictions.

Sun et al. (2015) examined the simultaneous changes in
QTL and SNP frequencies and observed the lowest pre-
diction accuracy (0.61) when the MAF of QTL and SNPs
was less than 0.06. The highest prediction accuracy oc-
curred when both the MAF of QTL and SNPs are more
than 0.06 (0.83). However, these authors argued that when a
trait is controlled by rare QTL (QTL with a frequency of less
than 0.06), the fitting haplotype yields a higher accuracy, and
this could be explained by the fact that haplotypes tended to
be in higher or complete LD with QTL than single SNPs,
regardless of the MAF of QTL. It has been reported that if
QTL have a small MAF but SNPs on the chip have a com-
mon MAF, the extent of LD will be low; a higher density of
SNPs on the chip does not circumvent this problem because
high LD requires a similar MAF of QTL and SNP (Sun et
al., 2015; MacLeod et al., 2014). Due to the ascertainment
bias of the SNPs on the chip (Matukumalli et al., 2009), LD
between SNPs and QTL reduces when the allele frequency
of QTL becomes more extreme. This means that the SNPs
do not provide an explanation for all of the QTL variance,
which leads to a lower accuracy, which is also shown in other
studies (Daetwyler et al., 2013; de los Campos et al., 2013).

Although in genetic association studies, the r2 measure be-
tween the two loci has long been used as a measure of the
LD between them, r2 has always been constrained with the
difference between couple alleles. While many studies have
investigated the dependence of r2 on the allele frequency be-
tween two loci (Devlin and Risch, 1995; Hedrick, 1987; Hill
and Robertson, 1968), Wray (2005) showed that r2 is more
constrained with the difference in allele frequency between
two loci. Therefore, the low allele frequency of QTL can be
a reason for the low accuracy of genomic prediction in some
cases.

Yan et al. (2009) demonstrated that the MAF is a key factor
that influences the estimation of the extent of LD. Within the
distance of maize LD (5–10 kb), mean r2 increases with the
increase in MAF, and the same occurrence was also observed
in other species (Khatkar et al., 2014). Khatkar et al. (2014)
showed that the MAF has a strong effect on mean r2, espe-
cially at short distances (up to 40 kb). They proposed a possi-
ble clarification, namely that as the MAF threshold increases,
there is an increase in the number of SNP pairs with similar

Table 3. Mean of linkage disequilibrium value (r2) between QTL
and adjacent SNPs for different distributions of QTL allele fre-
quency.

Standard Maximum Minimum r2 Scenario
deviation

0.19 (0.004) 0.89 (0.004) 0.09 (0.001) 0.42 (0.001)∗ constant
0.18 (0.004) 0.80 (0.004) 0.05 (0.001) 0.31 (0.001) uniform
0.19 (0.003) 0.70 (0.003) 0.01 (0.001) 0.20 (0.001) U-shape
0.19 (0.004) 0.65 (0.003) 0.01 (0.001) 0.19 (0.001) L-shape
0.21 (0.005) 0.21 (0.005) 0.006 (0.001) 0.13 (0.001) lowMAF

∗ Values within parenthesis shows the standard error of 10 replicates.

allele frequencies and, thus, an increase in r2. However, dif-
ferent factors such as population size, types of selection, the
mating system, the structure of LD across the genome, and
environmental effects can influence the distribution of the
QTL allele frequency in the population (Bost et al., 2001).

Investigating the effects of QTL allelic frequencies allows
us to improve genomic evaluation methods by considering
the effect of QTL allele spectra. Meuwissen et al. (2011) sug-
gested that a genomic relationship matrix weighted by MAF
would have a better result than an unweighted genomic re-
lationship matrix, when a high percentage of loci with a low
MAF are used. Speed et al. (2012) proposed a method for
weighting markers to account for LD. Their method, LD-
adjusted kinships, examined the local SNP correlation caused
by LD and computed optimal SNP weights by solving a lin-
ear program.

As shown in Fig. 2, the more distance between reference
set and validation set, the greater the decrease in the accu-
racy of prediction. This was expected because as the distance
between reference set and validation set increases, the link-
age phase between QTL and marker may vary more often,
LD decreases, and so the effects of QTL cannot be captured
sufficiently by the markers. Furthermore, the decrease in re-
lationship between the populations mentioned leads to a de-
cline in accuracy. These results are consistent with previous
results (Muir, 2007; Habier et al., 2007).

3.2 Regression of true breeding values on predicted
breeding values

The value of regression coefficients in the first-validation
generation was 0.94, 0.92, 0.88, 0.85 and 0.75 for constant,
uniform, L-shaped, U-shaped and lowMAF distribution, re-
spectively (Fig. 3). In a lowMAF distribution, regression co-
efficients were highly downward biased whereas in other dis-
tributions of allele frequency (constant, uniform, L-shaped,
U-shaped), the bias reduced. This higher bias in the estimates
in the lowMAF distribution could be the result of the QTL
with a low MAF so that their effects cannot be explained
by SNPs. In line with our findings, Solberg et al. (2008)
showed that the regression of true breeding values on pre-
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Figure 3. Regression of true breeding values on predicted breed-
ing values for different distributions of the QTL allele frequency.
Outliers denoted as black dots.

dicted breeding values increased when the amount of LD
gradually increased in the population. Since LD can be af-
fected by the difference in allele frequency between QTL
and SNP, higher LDs can be seen in scenarios with a higher
MAF of QTL. These variations in LD directly affect the ac-
curacy and regression coefficient and trigger changes in dif-
ferent scenarios.

4 Conclusions

Results showed that the accuracy of GEBVs largely depends
on the distribution of the QTL allele frequency. When the
QTL allele frequency was constant, the highest accuracy of
GEBVs was observed and the lowest accuracy was deliv-
ered in the lowMAF category. The magnitude of LD between
SNPs and QTL was dramatically affected by the allele fre-
quency of QTL. This simulation study showed that when
QTL allele frequency distribution was such that QTL had a
lower MAF, a lower LD was observed, which had a negative
effect on the accuracy of GEBVs. Hence, since most QTL in
livestock populations have a low MAF, the effect of the QTL
allele frequency distribution on prediction accuracy can be
alleviated through using a genomic relationship weighted by
MAF or LD-adjusted relationship matrix.

Data availability. Simulated data sets were used in this article and
the R-script is available upon request.
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