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Abstract. Quantitative or complex traits are controlled by many genes and environmental factors. Most traits in
livestock breeding are quantitative traits. Mapping genes and causative mutations generating the genetic variance
of these traits is still a very active area of research in livestock genetics. Since genome-wide and dense SNP
panels are available for most livestock species, genome-wide association studies (GWASs) have become the
method of choice in mapping experiments. Different statistical models are used for GWASs. We will review the
frequently used single-marker models and additionally describe Bayesian multi-marker models. The importance
of nonadditive genetic and genotype-by-environment effects along with GWAS methods to detect them will be
briefly discussed. Different mapping populations are used and will also be reviewed. Whenever possible, our
own real-data examples are included to illustrate the reviewed methods and designs. Future research directions
including post-GWAS strategies are outlined.

1 Introduction

Quantitative or complex traits are controlled by many genes
and environmental factors. Most traits in livestock breeding
are quantitative traits, and there is a tremendous interest in
analyzing these traits, e.g., with the aim to estimate breed-
ing values of selection candidates or to map the underlying
genes or chromosomal regions (quantitative trait loci, QTL).
In earlier QTL mapping studies sparse genetic marker maps
and linkage analysis were used to map QTL in experimental
populations like F2 crosses or half-sib designs (e.g., Weller
et al., 1990). Although many QTL were mapped, the map-
ping precision was usually low and only in a few exceptional
cases was the underlying gene identified.

With the advent of high-density SNP arrays for most of
the livestock species, it became possible to apply genome-
wide association studies (GWASs). The underlying princi-
ple of GWASs is to test the SNPs for trait associations. The
interpretation of statistically significant SNP trait associa-
tions is that the SNP is in linkage disequilibrium (LD) with a
causative gene and that gene and the SNP are tightly linked.

The latter is the case because the level of LD is a function of
the distance between two loci on the chromosome.

One of the main reasons for mapping QTL was to use
mapped QTL for selection purposes in marker-assisted selec-
tion schemes (Dekkers, 2004). However, the success of these
selection schemes was only very limited, mainly because the
explained variance by the mapped QTL was very small. In
order to overcome these limitations, Meuwissen et al. (2001)
transferred marker-assisted selection on a genome-wide scale
and developed statistical models to estimated genomic breed-
ing values that rely on genome-wide and dense marker data
but not on results from mapping experiments. The selection
of breeding candidates based on genomic estimated breeding
values became known as genomic selection, and it is imple-
mented in many livestock genetic breeding programs, where
it accelerates genetic gain substantially.

Despite the success of genomic selection, mapping genes
for complex traits is still a burning issue in livestock genet-
ics. Goddard et al. (2016) listed three main reasons for this.
The first is to improve genomic selection. Second, GWAS
results can increase biological knowledge about trait expres-
sion. The function of GWAS-identified genes can be used to
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derive and validate hypotheses about trait synthesis. This is
of special interest for novel traits that eventually will be in-
cluded in the selection goal or that might be controlled by tai-
lored drugs or feeding strategies, like feather pecking in lay-
ing hens, greenhouse gas emission in ruminants or nutrient
efficiency. Third, GWAS results can provide information on
the genetic architecture of the quantitative trait; i.e., we may
be interested in how many genes control the genetic variance,
what the effect sizes are, how important nonadditive genetic
effects are and so on.

Different statistical methods and types of populations have
been used in livestock GWAS experiments. In this study, we
will review the most commonly used methods and mapping
populations. First, single- and multi-marker GWAS models
are presented. Next, we describe the importance of nonaddi-
tive genetic and genotype-by-environment effects and show
how these can be modeled in GWASs. Different mapping
populations are used and these will be described in the fol-
lowing section. This review ends with a discussion, where
future research directions including post-GWAS strategies
are outlined. Whenever possible, our own real-data examples
are included to illustrate the reviewed methods and designs.
Because GWASs rely on LD between SNPs and causative
genes, we start with a brief description of the most commonly
used LD measure and its expectation.

2 Linkage disequilibrium measure r2 and its
expectation

Assume two loci, A and B, with two alleles each, i.e., al-
leles A and a and alleles B and b, with allele frequencies
fA, fa , fb and fb. The haplotype frequencies of the haplo-
types AB, Ab, aB and ab are denoted by fAB , fAb, faB and
fab, respectively. Following Hill and Weir (1994) the LD be-
tween these loci can be calculated as r2

=
(fABfab−fAbfAb)2

fAfafBfb
.

This measure has some convenient properties. It is bounded
between 0 and 1, with 1 being a perfect LD. Assume locus
A is a gene and B is an SNP used in a GWAS. In this case,
the fraction of gene variance explained by the SNP is r2 (al-
though the LD and the gene variance remains unknown un-
til the causative gene itself is identified). The expectation of
r2 can be expressed as E

(
r2)
= 1

/
(1+ 4Nec), with Ne be-

ing the effective population size, and c denotes the recom-
bination rate between the two loci (Sved, 2009; Tenesa et
al., 2007). From this expression, it becomes obvious that the
expected LD decays fast with increasing distances between
loci, especially if the effective population size is large. The
following example illustrates this. Stratz et al. (2014) inves-
tigated the LD structure of a segregating Piétrain pig popula-
tion. They used SNP chip genotypes (porcine 60K BeadChip,
Illumina Inc., San Diego, CA) of nearly 900 Piétrain boars
for the LD r2 calculation for SNP pairs with a maximum dis-
tance of 5 megabases (Mb). The results are shown for Sus
scrofa chromosome 1 (SSC 1) in Fig. 1 as a histogram of

Figure 1. Linkage disequilibrium decay as a function of the marker
distance in a purebred Piétrain population and in F2 crosses derived
from closely (Piétrain×Landrace/Large White) and distantly (Pié-
train×Meishan) related founder breeds (Sus scrofa chromosome
1).

mean r2 for bins of SNP pair distances. The level of LD de-
creases strongly for larger distances. Compared to humans,
long-range LD blocks are more common in livestock, es-
pecially in dairy cattle. This is due to the intensive use of
relatively few sires for breeding the next generation, which
results in a relatively small effective population size.

3 Single-marker models

Single-marker GWASs fit one SNP at a time, usually in a
mixed linear model (Yang et al., 2014). When assuming a
single SNP j with genotypes coded as the number of copies
of the allele with the minor frequency at the SNP for each in-
dividual i (xij = 0, 1 or 2), the following model is frequently
used:

yi = µ+ bjxij + ui + ei . (1)

Thereby, yi is the trait record of individual i, µ denotes the
fixed mean (assuming no other fixed effects exist) and bj is
the regression coefficient for SNP j to be estimated. In this
parametrization, the SNP effect represents the gene substi-
tution effect (Falconer and Mackay, 1996). The term ei de-
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notes the random residual and ui the random polygenic ef-
fect of the individual. The distributional assumption of the
polygenic effects is u∼N (0,Aσ 2

u ), with A being the rela-
tionship matrix either to be estimated from pedigree or from
SNP data and σ 2

u being the polygenic variance component.
The test for trait association is done by testing bj , being dif-
ferent from 0, which results in an error probability or p value.
In a GWAS, one SNP at a time is fitted to the model, resulting
in multiple tests. In order to correct for these multiple tests,
several approaches can be applied. The most common ones
are the Bonferroni correction and the false discovery rate
(FDR). Often, the Bonferroni correction is used to determine
genome-wide significance thresholds and the FDR to assess
how many of the associations reaching the significance level
are false positives. The level of multiple testing can be enor-
mous, especially if dense SNP chips or sequence data are
used, and these SNPs are in LD and thus do not segregate
independently. In these common situations, the Bonferroni
correction is very stringent, and thus the results are conser-
vative. More details about corrections for multiple testing in
QTL mapping can be found in Fernando et al. (2004).

The polygenic component in Eq. (1) is important to cap-
ture population stratification effects and thus to prevent an
inflation of type-I errors (e.g., MacLeod et al., 2010). Unlike
in plant breeding, it is very convenient that for many live-
stock mapping populations the pedigree is known, and hence
the relationship matrix needed to model this component ade-
quately can be calculated using this information. If this is not
possible, genetic markers can be used to set up a genomic
relationship matrix (GRM) (VanRaden, 2008). If GRMs are
used, the question is whether the SNP to be tested for associ-
ation (or indeed the SNPs being in LD with this SNP) should
also be used to set up the GRM or not. In the case of an in-
clusion, the SNP appears twice in the model and is treated
once as a fixed and once as a random effect. Consequently,
the SNP has to compete against itself, which seems some-
what counterintuitive. Indeed, Yang et al. (2014) showed that
this results in a reduced mapping power. These authors rec-
ommended the exclusion of all SNPs that are located on the
same chromosome as the SNP to be tested from the GRM.
However, a recent article by Gianola et al. (2016) on GWASs
with a GRM suggests that double-fitting the SNP effects (as
fixed and random effects) is a less severe problem than previ-
ously thought. Another way of modeling population structure
is to fit principal components (Patterson et al., 2006), but, as
Hayes (2013) pointed out, it is not exactly traceable which
variation source they actually remove. It may be noted that
removing population structure effects is not straightforward
when generalized linear models (e.g., Poisson models) are
applied (Lutz et al., 2017).

In a recent study we conducted a single-marker mixed
model GWAS in Holstein dairy cattle data (Streit et al.,
2013a). In brief, there were around 2300 progeny-tested bulls
available, which were genotyped with the bovine 50K Bead-
Chip (Illumina Inc., San Diego, CA). Qanbari et al. (2010)

investigated the LD structure in this population. The trait
considered was protein milk yield, and the relationship ma-
trix of the bulls was established using pedigree informa-
tion. The data set was split into a discovery data set (about
1800 bulls) for GWASs and a validation data set (500 bulls).
The latter was exploited to confirm significant SNP associ-
ations identified in the discovery data set. FDR was applied
to account for multiple testing. The results are shown in a
so-called Manhattan plot in Fig. 2, with the negative decadic
logarithm of the p value for each SNP on the y axis and the
chromosomal position on the x axis (a common way of pre-
senting GWAS results). Overall, 450 significant SNPs were
identified with an FDR of maximally 7 %. Of these, 69 as-
sociations were also significant in the validation data set.
Hence, these associations could be confirmed in the same
population. Some of the identified trait-associated SNP clus-
ters are located closely to well-known candidate genes seg-
regating in the population (e.g., DGAT1 on Bos taurus auto-
some (BTA) 14).

4 Bayes multi-marker models

As stated above, the level of multiple testing can be enor-
mous with dense SNP data, and stringent thresholds are
needed in order to prevent an inflation of type-I errors. In
addition, it is possible that the effect of a gene is only in part
captured by a single marker due to imperfect LD but might
be better explained jointly by the SNPs surrounding the gene.
In order to overcome these limitations, multi-marker mod-
els that fit all SNPs simultaneously as random effects in the
model were introduced for GWASs. Such models are able to
deal with the problem that the number of SNPs often exceeds
the number of observations. A general form of the model is
as follows:

yi = µ+

n_SNP∑
j=1

bjxij + ei . (2)

Compared to Eq. (1), the main difference is that all SNPs
are fitted simultaneously as random effects These models
were originally developed for genomic selection purposes
(Meuwissen et al., 2001) but have been shown to be very
useful also for GWASs (Sahana et al., 2011; Goddard et al.,
2016). The distributional assumptions of the SNP effects dif-
fer from model to model. The SNP-BLUP (Best Linear Un-
biased Prediction) model assumes that all SNP effects come
from one normal distribution with a small variance. This im-
plies that the trait genetic variance is more or less equally
distributed over the genome. This is a strong assumption and
probably unrealistic for many quantitative traits. For this rea-
son, Meuwissen et al. (2001) proposed two Bayesian models.
The method called BayesA assumes a t distribution of the
SNP effects, which is thicker-tailed compared to the normal
distribution, depending on the degrees of freedom. BayesB
models assume that only a fraction of the SNPs (π ) has an
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Figure 2. Test statistics of a single-marker GWAS for the trait milk protein yield in a sample of the German Holstein population. The solid
line corresponds to a significance level of P = 0.001. Significant SNPs are indicated by triangles (taken from Streit et al., 2013a).

effect on the variance of a trait. For this fraction, a t dis-
tribution is assumed. Since the landmark paper by Meuwis-
sen et al. (2001), further Bayes models were introduced (re-
viewed by Gianola, 2013). Verbyla et al. (2009) and Verbyla
et al. (2010) proposed Bayesian stochastic search variable se-
lection, which was also named BayesC by these authors. This
model assumes two t distributions: one with a large variance
for the π SNP fraction and one with a small variance for the
1π fraction (e.g., 100 times smaller). SNPs belonging to the
latter fraction hardly contribute to the genetic variance of a
trait (or do not do so at all), and their effects are close to 0.
The assumptions of BayesR, introduced by Erbe et al. (2012),
are based on a mixture of normal distributions for the SNP
effects.

Inference about an SNP trait association can either be
drawn by the effect of a single SNP or by the posterior proba-
bility that the SNP effect comes from a distribution with large
variance (in BayesB, C and R). The SNP effect is a random
effect and a marginal effect, i.e., an effect corrected for all
other SNP effects. This effect is sometimes also denoted as a
conditional marker effect because the effects are drawn from
conditional posterior distributions. The marginal marker ef-
fect is different from the effect obtained in Eq. (1) and, in-
deed, very sensitive to the SNP density. With increasing SNP
density, the level of shrinkage towards 0 becomes stronger.
Thus, it seems more straightforward to draw an inference
by considering SNP effects within a window of defined size
(e.g., 1 centimorgan (cM)) jointly and estimate the window
genetic variance. Fernando et al. (2017) used the window ge-
netic variance to calculate the window posterior probability
of association (WPPA). This criterion has some nice proper-
ties. If a WPPA threshold of, e.g., 0.95 is used to declare an
association as plausible, this results in a proportion of false
positives of 0.05. This holds true if the data-generating model
and the data-analysis models are similar. The WPPA crite-
rion is convenient to compute, does not suffer from increas-
ing marker density and produces an association criterion that
is directly interpretable as the probability of window trait as-
sociation.

For genomic predictions, the Bayesian methods often out-
performed the SNP-BLUP model in computer simulations
(e.g., Meuwissen et al., 2001), but this was often not the
case in real data. This is probably due to the fact that many
genes affect a trait and due to the long-range LD in live-
stock breeds, which results in many SNPs being in LD with
a gene. However, this equal performance of the models does
not hold for their use in GWASs. We used the Holstein dairy
cattle data set mentioned above (Streit et al., 2013a) to com-
pare the models SNP-BLUP, BayesA and BayesC in a GWAS
for milk protein yield. In the BayesA and BayesC models, t
distributions with 4 degrees of freedom (df) were assumed.
The fraction of SNPs coming from the distribution with the
large variance was π = 0.2. In BayesC, the variance of this
distribution was 100 times larger than the variance of the
a priori 1π fraction of SNP effects. Gibbs sampling was
used to draw samples from the posterior distributions us-
ing the program BayesDsamples (Wellmann and Bennewitz,
2012). The SNP effect estimates were used to calculate win-
dow genomic breeding values for windows of five consecu-
tive SNPs (GEBVW) using standard notations (Falconer and
Mackay 2007; Bennewitz et al., 2017). From these, the ex-
pected GEBVW (E(GEBVW)) was subtracted in order to pin-
point trait-associated chromosomal regions. The E(GEBVW)
was calculated under the assumption of an equal distribu-
tion of the additive genetic variance across the genome; i.e.,
it was assumed that all genomic regions contribute equally
to the additive genetic variance (for further details, see Ben-
newitz et al., 2017, Appendix). A putative QTL was assumed
in those windows that showed a deviation greater than 0, i.e.,
GEBVW−E(GEBVW)> 0. The plot of the GEBVW devia-
tions are shown in Fig. 3 for all three methods. When ap-
plying SNP-BLUP, only the window surrounding DGAT1 on
BTA 14 showed evidence for trait association. BayesA pro-
duced around 10 additional and BayesC around 30 additional
signals. The results are shown for BTA 6 in detail in Fig. 4,
for which the single-marker GWAS (Eq. 1) revealed a con-
firmed trait-associated region (Fig. 2). BayesC clearly pro-
duced two signals on this chromosome, which were not de-
tected by the two other methods. Following this, it seems that
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the Bayes methods, especially BayesC, are much more able
to zoom into the genome and to pinpoint causative genomic
regions. BayesR, which used a mixture of normal distribu-
tions with four components, was not investigated in this study
but was propagated as a suitable method for the GWAS by
Goddard et al. (2016).

Compared to single-marker GWASs, the application of
these multi-marker methods is not straightforward and needs
some carefully chosen parameters. For SNP effect estima-
tion, the most important ones are the Markov chain Monte
Carlo (MCMC) length, π , the variance scaling factor and the
degrees of freedom. To our best knowledge, the length of the
MCMC suitable for GWASs has not been sufficiently inves-
tigated until now. A small number of df results in a heavy-
tailed t distribution and only large-effect SNPs will be identi-
fied (small effects will be regressed back to 0). Consequently,
the number of false positives might be small but this compro-
mises the power. The opposite holds true for larger numbers
of df. The size of the windows for inference purposes, e.g.,
by the WPPA criterion, affects the power additionally. Larger
window sizes result in an increased power but also in a re-
duced precision, i.e., the size of a trait-associated genomic
region is larger (Bennewitz et al., 2017). There is a trade-off
between power and precision. An obvious solution would be
to start with larger window sizes, e.g., of 1 cM, to find signif-
icant trait-associated chromosomal regions and subsequently
to reduce the windows size to fine-map the region.

We further tested nonparametric additive regression mod-
els originally adopted for genomic selection (Bennewitz et
al., 2009) for GWASs using this data set. In contrast to
Bayesian methods, no prior information is needed. However,
this method did not produce very clear GWAS signals, which
was similar to the SNP-BLUP model (not shown).

5 Nonadditive genetic and interaction effects

5.1 Dominance and imprinting

The most important nonadditive genetic effects are domi-
nance and epistasis (Falconer and Mackay, 1996). It is well
known that additive genetic variance is most important, and
compared to this, dominance and epistatic variances are in
general much smaller in size (Hill et al., 2008). However,
this does not mean that there are no dominance effects of
a detectable size (Wellmann and Bennewitz, 2011). Recent
SNP-based investigations revealed that dominance variance
can be substantial (e.g., Ertl et al., 2014; Su et al., 2012).
Bolormaa et al. (2015) used a large-scale experiment with
about 10 000 cattle, which were phenotyped for 16 quantita-
tive traits and genotyped with dense SNP panels. They con-
ducted a GWAS using single-marker regression analysis and
found many trait-associated SNPs with a dominance effect.
Moreover, the estimates of the dominance variance as a pro-
portion of the phenotypic variance across the traits was be-
tween 0 and 42 % with a median of 5 %. Hence, it seems

Figure 3. Results of a window-based multi-marker GWASs in a
sample of the German Holstein population using the models SNP-
BLUP (top panel), BayesA (middle panel) and BayesC (bottom
panel). For each window, the deviation of the variance of the ge-
nomic estimated breeding value from its expected value is shown.
The solid line corresponds to a deviation of 0.
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that dominance is an important source of genetic variation
for some traits, and it seems appropriate to use this additional
variation if the data structure permits it (i.e., genotypes and
phenotypes are collected from the same individual). For ex-
ample, the data set of Streit et al. (2013a) used in the previ-
ous section does not allow for dominance effect estimation
because daughter yield deviations were used.

Single-marker association models (Eq. 1) can be extended
straightforwardly towards modeling dominance. In addition
to the regression on the SNP gene content, a regression on
a heterozygous indicator variable is included, which repre-
sents the dominance deviation effect (Falconer and Mackay,
1996). Because dominance is modeled explicitly, the regres-
sion coefficient on the gene content no longer represents the
gene substitution effect but the additive gene effect. This
parametrization invokes one additional parameter to be es-
timated. Wellmann and Bennewitz (2011) showed that dom-
inance and additive effects are dependent on each other in
a complicated manner. Large dominance effects are usually
observed for genes with large additive effects, which means
that overdominance is a rare event. Therefore, in single-
marker GWAS, a two-step procedure is often applied. In step
one, only additive effects are fitted to the model. In the sec-
ond step, dominance is included, and this extended model
is applied only to SNPs with significant additive effects. This
way of modeling dominance in single-marker GWAS models
was chosen by, e.g., Bolormaa et al. (2015).

The BayesC model was extended towards accounting for
dominance, resulting in BayesD (Wellmann and Bennewitz,
2012). This model uses priors for the additive and dom-
inance effects and the gene frequencies that resemble the
complicated relationship between them. Roughly speaking,
for small additive effects, the dominance deviations fluctu-
ate around 0. With increasing additive effect sizes, the dom-
inance deviation becomes larger and points in general to the
homozygous genotype associated with the larger phenotypic
value. The sign of additive and dominance effects depend
on the gene frequency. Following this, it is unlikely that
the contribution of the gene to the overall genetic variance
is large. The latter is assumed because selection shifts the
gene frequency towards a value where the variance contri-
bution is small. Details can be found in Wellmann and Ben-
newitz (2011). In a recent study, we compared BayesC and
BayesD for GWASs using simulated and real data sets (Ben-
newitz et al., 2017). We used the WPPA criterion for infer-
ence purposes and found a shift in power that was between
−2 and 9 %. Dominance is an interaction effect of the two
alleles at a locus. Their effects are captured in the associ-
ation analysis by matched haplotype pairs, i.e., diplotypes.
Diplotypes show a faster decay around a focal point in the
genome compared to haplotypes. Hence, it can be expected
that BayesD improves the mapping precision as well, but this
needs higher marker densities.

Imprinting seems to be a non-negligible source of varia-
tion for some quantitative traits in livestock. Trait-associated

SNPs with imprinting effects can be detected by linkage anal-
ysis and GWASs. Models to do such analyses are presented
in Mantey et al. (2005) and Hu et al. (2015).

5.2 Epistasis

The statistical interaction between SNPs is termed epista-
sis. The role of epistasis in the manifestation of quantita-
tive traits has been subject to some debate during the last
decades (e.g., Carlborg and Haley, 2004; Hill et al., 2008,
among others). Detecting pairwise epistatic trait-associated
SNPs can be done in principle by extending Eq. (1) by a
second SNP and interaction terms between them. Even in
this simple form of epistasis, i.e., pairwise epistasis, the
model becomes much more complex because four interac-
tion terms have to be fitted (additive-by-additive, additive-
by-dominance, dominance-by-additive and dominance-by-
dominance). In addition, the search for epistatic effects in-
volves expanding from one dimension genome screenings
(as for additive effects) towards two or even higher dimen-
sions. This requires many statistical tests and thus increases
the problem of multiple testing enormously. Therefore, in ad-
dition to the need of dense SNP maps, a large sample size is
needed in order to obtain a sufficient power to detect epistatic
effects. It is sometimes argued that SNPs involved in epis-
tasis also show additive effects. Based on this assumption,
epistatic interactions are sometimes fitted only for SNPs that
were significant in a previous GWAS run without fitting epis-
tasis. This reduces the number of tests dramatically. Wei et
al. (2014) reviewed statistical models to detect epistasis by
GWASs.

5.3 Genotype-by-environment interaction

Genotype-by-environment interactions (G×E) are defined as
the difference between genotype effects measured in differ-
ent environments. A recent review of G×E in livestock can
be found in Hayes et al. (2016). G×E can result in re-ranking
effects; i.e., one genotype is superior in one environment,
but inferior in the other environment. G×E scaling effects
refer to the same ranking of genotypes, but the differences
are larger in one environment compared to another environ-
ment. In general, two statistical methods are applied to test
for G×E. Multiple-trait models treat the phenotypic records
of a trait collected in different environments as different traits
and calculate a genetic correlation between them. A devia-
tion of this correlation from 1 (e.g., < 0.8) can be interpreted
as evidence for G×E. In reaction norm models, the environ-
ment is described by a continuously distributed environmen-
tal descriptor and the phenotype is modeled as a function of
the environment, where the phenotype is produced. Typical
environmental descriptors are temperature–humidity indices
(Hayes et al., 2003), average herd production levels as an in-
dicator of the feeding level (Calus et al., 2002; Hayes et al.,
2003) or herd disease levels (e.g., somatic cells score as an
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Figure 4. Comparison of GWAS results generated with SNP-BLUP (solid line), BayesA (dashed line) and BayesC (dotted line) on BTA 6 in
a sample of the German Holstein population. For each window, the deviation of the variance of the estimated genomic breeding value from
its expected value is shown. The horizontal solid line corresponds to a deviation of 0.

indicator of udder health and infection pressure on the farm;
Streit et al., 2013b). Hayes et al. (2009) proposed a two-step
reaction norm GWAS model to identify SNPs that showed
G×E effects. In the first step, a random regression reaction
norm model is applied to sires with sufficient progeny infor-
mation in different environments as follows:

yijk = µ+

1∑
m=0

sjm ·E
m
k + eijk. (3)

Hereby, yijk is the observation of offspring i of sire j

recorded in herd k with average level of the environmental
descriptor Ek , sjm is the random sire effect of sire j of order
m and e denotes the residual. The covariance structure of the
sire regression coefficients is

var
[
s0
s1

]
= A ⊗

[
σ 2
s0

σ 2
s0s1

σ 2
s0s1

σ 2
s1

]
.

Note that this is a sire model. The residuals contain
about three-quarters of the genetic variance. Thus, if G×E
is present, the residuals are heterogeneous, and this should
be modeled as well. This model estimates two sire effects:
one for the slope and one for the intercept of the reaction
norm. If the mean of the environmental descriptor is set to
0, the intercept solutions of the sire regression coefficients
are sire estimates for the general production level, i.e., the
production level in the average environment. The sire’s re-
action norm slope effects represent the environmental sensi-
tivity of the sire. In the second step, the sire’s intercept and

slope solutions are used as observations in a GWAS model,
e.g., Eq. (1). GWAS hits for the slope identify environmen-
tally sensitive trait-associated SNPs and thus SNPs involved
in G×E. Equation (3), shown above, is a random regres-
sion model. As a result, the sire solutions for intercept and
slope are regressed back to 0, which might compromise the
power for a subsequent GWAS. Alternatively a fixed regres-
sion could be applied (known as the Finlay–Wilkinson re-
gression in plant breeding), but the behavior of such a model
for GWAS purposes needs to be investigated in detail.

In an earlier study, we used the two-step approach de-
scribed above to map G×E SNPs in German Holsteins (Streit
et al., 2013a). We used milk production test-day records of
around 1.3 million daughters sired by 2300 sires with 12 mil-
lion first lactation test records. We applied a two-step proce-
dure to map SNPs associated with protein production G×E.
Initially, a reaction norm random regression model (Eq. 3)
was applied to the data, and subsequently we used the slope
sire solutions as observations in a single-marker associa-
tion model (Eq. 1). The results are shown in Fig. 5. We de-
tected 351 significant trait-associated G×E SNPs, of which
44 could be confirmed in the same population. Generally, the
results are very similar to those of the general milk protein
production (see Fig. 2). Indeed, many trait-associated SNPs
were also involved in G×E. This is discussed in detail in
Streit et al. (2013a).
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Figure 5. Test statistics of a single-marker GWAS for SNP environmental sensitivity for milk protein yield in a sample of the German
Holstein population. The solid line corresponds to a significance level of P = 0.001. Significant SNPs are indicated by triangles (taken from
Streit et al., 2013a).

6 Mapping populations

6.1 Segregating populations

In contrast to QTL linkage mapping, for GWASs no experi-
mental population (e.g., half-sib or F2 design) has to be es-
tablished because genome-wide LD is assumed and used for
mapping purposes (in linkage mapping the LD is generated
within families by the mating design, and this allows for the
use of low marker densities). Nevertheless, the study design
affects the outcome of a GWAS. A few important aspects
will be mentioned in the following. First, the sample size
of the experiment affects the power. It is often stated that
at least 1000 genotyped and phenotyped individuals have
to be included, even for simple traits. This is the minimum
number of individuals required for statistical analysis (ex-
cept for mapping major genes, which are rare for quanti-
tative traits). Larger numbers can be obtained by analyzing
several mapping populations jointly, e.g., Holsteins, Jersey
and Red cattle breeds, as done by Mao et al. (2016). This
leads to a substantially larger mapping population, and the
mapping resolution is much higher as well. The latter is be-
cause the genetic diversity within the mapping population is
much larger (i.e., the hypothetical effective population size
is larger, which in turn affects the LD pattern, as described
above). It was frequently shown that such across-breed anal-
ysis leads to clearer SNP association signals for genes that
segregate in all breeds. At the same time, such an approach
can be used to validate significant SNP trait associations
across breeds. Another validation approach is to use a sample
from the same breed, as done by Streit et al. (2013a) (Figs. 2
and 5). Across-breed analyses can be done either by pooling
the data and analyzing them jointly or by a meta-analysis,
where the results from the within-breed analysis (effect es-
timates and p values) are combined. The latter is more con-
venient to apply because each breed has its own fixed and
random explanatory variables to be included in the GWAS
models.

The density of the SNP panel is an additional important
driver for the success of a GWAS experiment. From the ex-
pectation of the LD (shown above), it becomes obvious that
higher densities are needed for populations with larger ef-
fective population sizes. For cattle, besides the standard chip
(50k), there is a high-density (HD) SNP panel (777k) avail-
able. Especially for across-breed GWAS experiments, dense
SNP data are beneficial due to the large hypothetical effec-
tive population size. For many breeds, influential sires were
re-sequenced and these sequences can be used for imputation
(Daetwyler et al., 2014). Hence, with the aid of HD-SNP chip
data and the sequence information of some key ancestors, the
whole-genome sequence variants can be inferred for all indi-
viduals within a mapping population. This, in turn, can be
used for GWASs. A prerequisite for association mapping is
a high LD between the marker and the causative mutation.
A paradigm shift takes place when using genome sequence
variants because all variants (i.e., SNPs and causative muta-
tions) are included in the data set. Now the challenge is to
identify the causative mutations among all polymorphisms
and to separate them from SNPs that are solely in LD with
the mutation. The success of a GWAS with genome sequence
variants depends strongly on the quality of imputation of
these variants in the study population. This is not always en-
sured but will not be reviewed here. Another problem is the
level of multiple testing which increases towards several mil-
lion correlated tests. A Bonferroni correction is too conserva-
tive. A possible solution for this problem is to map the QTL
using SNP chip data in a first GWAS run applying standard
multiple testing corrections (Bonferroni or FDR). In a second
step, fine-mapping of the significant regions can be done us-
ing imputed genome sequence variants. Since it is assumed
that the regions are significant, no additional stringent signif-
icance level has to be applied during fine-mapping.
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6.2 F2 designs

Many F2 crosses were established during the last decades,
especially in pig breeding (Rothschild et al., 2007). Often,
the F2 individuals were phenotyped under standardized con-
ditions (e.g., on experimental farms) for traits that are in-
teresting but very hard to measure, like efficiency traits or
meat quality traits. Founder breeds were frequently chosen
from Asian and from European breeds. Phylogenetic analy-
sis of whole-genome sequence data revealed distinct lineages
of these two types of breeds. In addition, F2 crosses within
European types of breeds were established. In many cases
one commercially used breed was one of the two founder
breeds, e.g., the F2 crosses described in Boysen et al. (2010)
and Rückert and Bennewitz (2010); both had Piétrain as one
founder breed, which is an important sire line breed in Eu-
rope. We studied the LD pattern within an F2 cross derived
from distantly related founders (i.e., a Meishan×Piétrain
cross) and within a cross derived from closely related founder
breeds (i.e., Landrace/Large White×Piétrain cross), using
porcine SNP chip data. The results for SSC 1 are visualized
for each of the two crosses in Fig. 1. As shown there, the LD
is high and almost did not decrease with increasing marker
distances up to 5 Mb in the Meishan× Piétrain cross, which
implies a poor mapping resolution. In contrast, the LD pat-
tern of the Landrace/Large White× Piétrain cross is simi-
lar to the pattern observed within the Piétrain breed (Fig. 1).
Consequently, this results in a similar mapping resolution of
such F2 designs and their founder breeds.

The question is whether is possible to map and fine-map
genes in porcine F2 designs by SNP chip genotyping and
GWASs. Ledur et al. (2009) studied the power of GWASs
in F2 crosses by means of simulations and compared it to
classical linkage analysis mapping. They found an increase
in power and a smaller rate of false positive results in F2
crosses with large sample sizes and high marker densities. In
order to continue these investigations, we simulated the two
types of porcine F2 crosses described above (Schmid et al.,
2017). Thereby, we created a situation where the genome se-
quence variants of all F2 individuals were available. The re-
sults showed that existing F2 crosses generated from closely
related founder breeds with whole-genome sequence data
available for all individuals could be used to map genes that
segregate within a founder breed with a high precision. This
is due to the high mapping resolution within this type of
cross. Such genes are of interest for breeding purposes, e.g.,
in the genomic selection program established in the Piétrain
breed. In contrast, the mapping precision was very poor in
the cross derived from distantly related founder breeds, as
expected. The results of the simulation study showed that it
might be a worthwhile effort to genotype existing F2 crosses
derived from closely related founder breeds with dense SNP
panels and conduct GWASs in order to make use of the ex-
isting information in the F2 crosses, especially with regard to
the special traits that were collected in these individuals.

7 Post-GWAS analyses

The final aims of a mapping experiment are to detect the un-
derlying gene and the causative mutation within the gene. On
the level of the DNA, the causality of a mutation can be iden-
tified (although not formally proved) by collecting pieces of
evidence. The following facts strongly support the causal-
ity of a mutation (Mackay, 2001; Meuwissen, 2010). (1) If a
mutation is included in the statistical model, no further poly-
morphism in strong LD with this mutation shows a signifi-
cant effect. (2) The genotype effects can be validated and are
similar in size in different populations and show the same
algebraic sign. (3) The complete linkage disequilibrium test
(CLD test) and (4) the concordance test have positive results.
To verify point 2, one needs multiple populations. Due to the
small number of individuals in experimental populations, this
requirement is often difficult to fulfill. The CLD test (point
3; Uleberg and Meuwissen, 2011) is based on two analytic
steps. First, all SNPs are tested one by one for association
and the test statistics are noted. The second step consists of
analyzing the difference in the test statistics. The hypothesis
is based on the assumption that the causative mutation ex-
plains more variation than any SNP, which is in incomplete
LD with the mutation. The concordance test (point 4; Ron
and Weller, 2007; Weller and Ron, 2011) tests whether the
same SNP allele identifies the same QTL allele (Q or q) in
multiple families of QTL-heterozygous parents (which are
identified by markers, for instance by using multiple marker
regression; see Knott, 2005). Proving the causality of a mu-
tation requires functional studies, but this is not the subject
of this review.

8 Concluding remarks

Mapping trait-associated SNPs and genes underlying the ge-
netic variance of quantitative traits is still a burning issue in
livestock genetic research. In future, two developments can
be expected. On the one hand, we already observe that the
data sets available for GWAS are increasing from day to day,
and in the near future, we will be able to use several hundreds
of thousands of individuals. This holds true for traits that are
widely used in animal breeding and for which large-scale
phenotyping is thus implemented in routine data collection.
Combined with improved annotated reference genomes and
genome sequence databases, it will be possible to infer the
whole-genome sequence variants of the individuals. Thus, it
can be expected that the number of detected causative vari-
ants will increase for these mainstream traits, especially in
across-breed analyses (within breeds the LD structure might
prohibit the detection of many causative mutations even in
large data sets). On the other hand, phenotypic records of
genetically simpler traits can be collected in experimental
populations by in-depth phenotyping (e.g., metabolic traits or
gene expression traits). The detection of causative genes for
these traits requires less large data sets, but a high precision
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in data recording and a well-defined experimental structure
are needed.
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