

Utility of several microsatellite markers for the genetic characterisation of three ex situ populations of threatened caprine taxa (*Capra aegagrus*, *C. cylindricornis* and *C. falconeri*)

E. Levý¹, L. Putnová², R. Štohl³, K. Svobodová¹, J. Matoušková¹, J. Robovský⁴, J. Lamka⁵, I. Vrtková², and M. Ernst¹

¹Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic

²Department of Morphology, Physiology and Animal Genetics, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic

³CEITEC – Central European Institute of Technology Brno, University of Technology, Technická 3058/10, 61600 Brno, Czech Republic

⁴Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, and Liberec Zoo, Masarykova 1347/31, 46001 Liberec, Czech Republic

⁵Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 50005 Hradec Králové, Czech Republic

Correspondence to: M. Ernst (ernst@email.cz)

Received: 20 May 2015 – Revised: 22 September 2015 – Accepted: 22 September 2015 – Published: 7 October 2015

Abstract. Caprines belong to the most endangered group of mammals and artiodactyls suffering from many negative human impacts. Fortunately, many of them are protected and managed by national and international legislation and in situ and ex situ conservation actions. Although many microsatellite markers have been developed for wild and domestic caprines, they remain uninvestigated in respect of their utility for some taxa. We examined the utility of the International Society for Animal Genetics microsatellite set for genetic characterisations of three wild and one domestic *Capra* species from captive or semi-captive ex situ populations in Europe. Our data suggest the utility of this microsatellite set for detecting shared and species-specific alleles, characterising the genetic variability, and determining phylogenetic relationships and intraspecific structures in investigated taxa. We detected a depleted genetic variability in *Capra falconeri* and *Capra cylindricornis* in European ex situ populations; unrelated individuals are therefore needed for improving genetic variability parameters, as they are for the extralimital population of *Capra aegagrus* in the Vřísek game reserve (Czech Republic), for which we identified no genetic introgression from the domestic goat and great dissimilarity with some analysed individuals from European zoos. Current results here indicate some difficulties with the historical evidence, for example with respect to the origin and purity of particular individuals under breeding programmes.

1 Introduction

Caprines (*Caprini sensu*, Groves and Grubb, 2011) represent a rather evolutionarily young group of bovids, but one that is certainly no less diverse in its morphological, ecological and behavioural features than other groups of ungulates (Groves and Leslie, 2011; Hassanin et al., 2012; Bibi, 2013). Caprines exhibit extraordinary adaptations to many habitats, including the harshest environments of our planet, but despite that, they are not resistant to negative human impacts (e.g. Shackleton, 1997). They suffer from habitat destruction, hunting, competition with domestic livestock, disease from domestic livestock, and also introgression from their domestic counterparts that originated in part from them (Shackleton, 1997; Groves and Leslie, 2011). In effect, *Caprini* belong to the most endangered group of artiodactyls, with approximate twice as many endangered and critically endangered species as other bovid groups (e.g. Bovini, Antilopini; our counting is based on Groves and Leslie, 2011). Fortunately, many of them are protected and managed by national and international legislation and specific in situ and ex situ conservation actions, and genetic markers are increasingly being used for genetic characterisation (e.g. genetic variability parameters, genetic purity) of caprine species and their particular populations (e.g. Maudet et al., 2002; Hammer et al., 2008; Gebremedhin et al., 2009). To avoid negative effects of outbreeding and inbreeding, management actions should be based upon a large number of purebred individuals; genetic variability parameters, structure and purity are relatively easily and unequivocally detectable with a good resolution by genetic markers analysed by population-genetic and phylogenetic methods (e.g. Allendorf and Luikart, 2007; Frankham et al., 2003). The study of microsatellite loci of *Capra* species is very important for effective scientific management from the prospective of maintaining the wild (sub)species/domestic breed purity and from the perspective of genetic variability parameters.

Microsatellite markers with a high polymorphism are one of the best tools for detecting the genetic fitness of whole populations or even of particular individuals, including paternity determination (e.g. Witzenberger and Hochkirch, 2011). Although many microsatellite markers have been developed for wild and domestic caprines (Arevalo et al., 1994; Bhebhe et al., 1994; Bishop et al., 1994; Crawford et al., 1995; Kemp et al., 1995; Kogi et al., 1995; Ma et al., 1996; Vaiman et al., 1996; Luikart et al., 1999, 2006; Maudet et al., 2001, 2002, 2004; Kumar et al., 2009), they remain uninvestigated in respect of their utility for some taxa. We examined the utility of the ISAG (International Society for Animal Genetics) microsatellite set, available primarily for the domestic goat paternity specification, for genetic characterisations of three wild and one domestic *Capra* species from captive or semi-captive ex situ populations from EAZA (European Association of Zoos and Aquaria) or private institutions in central Europe – specifically *Capra falconeri heptneri*,

C. cylindricornis, *C. aegagrus* and *C. hircus*. One population, of *Capra aegagrus* in the Vřísek game reserve (near Česká Lípa, northern Bohemia, managed by Forests of the Czech Republic, s. e.), is associated historically with a relatively well-known out-of-range population of this species in the Pálava Biosphere Reserve (southern Moravia), where several (the precise number is unknown) wild goats were released in the 1950s from Prague and Brno zoos (Ernst et al., 2011). The wild goats occupied the steppe and surrounding habitats under some game control management for 43 years, until in 1996 the remaining individuals were captured and transferred to the Vřísek game reserve due to damage to valuable steppe flora in the Pálava reserve (e.g. Heroldová, 1997; Ernst et al., 2011).

From here, the studied taxon *C. falconeri heptneri* is actively managed under the European Endangered Species Programme breeding programme, and *Capra cylindricornis* is managed under the European StudBook breeding programme of the EAZA (Holma, 2007; Fainstein, 2011). The studied taxa meet these International Union for Conservation of Nature criteria: wild goat (*Capra aegagrus*) – vulnerable (Weinberg et al., 2008); East Caucasian tur (*C. cylindricornis*) – near threatened (Weinberg, 2008); markhor (*Capra falconeri*) – endangered (Valdez, 2008). Although the domestic goat (*Capra hircus*) is not threatened on the whole, some specific breeds are threatened or extinct (Taberlet et al., 2008). All wild species analysed here show decreasing population trends (Valdez, 2008; Weinberg, 2008; Weinberg et al., 2008).

This study represents an attempt to analyse the above-mentioned taxa in respect of ISAG microsatellite set utility and to assess detected genetic parameters in the conservation management programmes for these taxa.

2 Materials and methods

2.1 Sample collection

We studied a total of 55 individuals of *Capra aegagrus* (hereinafter referred to as CA), of which $n = 50$ were from the Vřísek game reserve and $n = 5$ from the Olomouc zoo; 26 individuals of *Capra falconeri* (hereinafter referred to as CF), subspecies *C. f. heptneri*, from one breeding institution in Slovakia; 10 individuals of *Capra cylindricornis* (hereinafter referred to as CC) from breeding institutions in the Czech Republic; and 9 individuals of various local breeds of *Capra hircus* (hereinafter referred to as CH) typical for the Czech Republic in order to detect possible genetic introgression to CA. From 2008 to 2012, blood samples were collected from the jugular veins of adult animals by a sampling kit comprising an anticoagulant (150 µL 0.5 M EDTA/5 mL of blood). As for juvenile animals, hair bulbs were sampled and mouth cavity smears were acquired with the oral smear kit, to minimise stress. As for harvested or deceased individuals, the skeletal muscles were used for DNA isolation. All proce-

Table 1. Genetic variation analysed by eight microsatellite markers.

Locus (reference)	Primer sequence (5' → 3') Forward (F)/Reverse®		FM	PC	T	IA	n	Ng	Na	MAF	He	Ho	PIC	F
HSC (Glowatzki-Mullis et al., 2007)	F:CTGCCAATGCAGAGACACAAGA R:GTCTGTCTCCTGTCTTGTATC	FAM	480	CA	271, 283 , 285, 287, 293 , 301		55	6	6	0.6727	0.4766	0.4545	0.404	0.0467
				CF	271, 273, 281		26	4	3	0.6923	0.4796	0.5385	0.4212	-0.125
				CC	269 , 271		10	2	2	0.9500	0.1000	0.1000	0.0905	0.0000
				CH	267 , 273, 285		9	5	3	0.5556	0.6013	0.5556	0.4889	0.0805
INRA0063 (Vaiman et al., 1994)	F:GACCACAAAGGGATTCACAAAGC R:AAACCACAGAAATGCTTGAAG	FAM	160	CA	166 , 172, 174, 176		55	5	4	0.5909	0.5024	0.5818	0.391	-0.16
				CF	174, 176, 178		26	5	3	0.4808	0.6237	0.6923	0.5327	-0.113
				CC	172 , 176		10	3	2	0.6500	0.4789	0.5000	0.3515	-0.0465
				CH	172, 174, 176		9	3	3	0.7778	0.3856	0.4444	0.3267	-0.1636
SRCRSP0024 (Yeh et al., 1997)	F:AGCAAGAAGTGTCCACTGAACAG R:TCTAGGTCCATCTGTGTTATTGC	FAM	320	CA	144 , 146 , 152 , 158, 160, 164		55	10	6	0.3636	0.7014	0.7636	0.6364	-0.09
				CF	158, 160, 164		26	3	3	0.6923	0.4638	0.6154	0.3914	-0.336
				CC	164		10	1	1	1.0000	0.0000	0.0000	0.0000	NI
				CH	150 , 158, 160		9	4	3	0.5556	0.6209	0.7778	0.5174	-0.2727
ILSTS19 (Kemp et al., 1995)	F:AGGGACCTCATGTAGAACG R:ACTTTGGACCCCTGTAGTGC	HEX	320	CA	140 , 148, 150, 152		55	4	4	0.9091	0.172	0.0545	0.1652	0.6848
				CF	148, 150		26	3	2	0.6731	0.4487	0.5	0.3432	-0.117
				CC	172		10	1	1	1.0000	0.0000	0.0000	0.0000	NI
				CH	146 , 148, 150, 154		9	5	4	0.5000	0.6601	0.5556	0.5567	0.1667
INRA005 (Bishop et al., 1994)	F:TTCAGGCATACCCACACCATG R:AAATATTAGCCAATGAAAATGGG	HEX	80	CA	114, 116, 118		55	4	3	0.7182	0.4135	0.3455	0.3329	0.1659
				CF	114, 122, 136, 138		26	5	4	0.5769	0.5943	0.6154	0.5249	-0.036
				CC	114		10	1	1	1.0000	0.0000	0.0000	0.0000	NI
				CH	112 , 114, 116, 118		9	6	4	0.4444	0.6732	0.6667	0.5652	0.0103

Table 1. Continued.

Locus (reference)	Primer sequence (5' → 3') Forward (F)/Reverse®	FM	PC	T	IA	n	Ng	Na	MAF	He	Ho	PIC	F
MAF0065 (Bishop et al., 1994)	F:AAAGGCCAGAGTATGCAATTAGGAGGAG	NED	480	CA	110 , 120, 122 , 124, 130, 134	55	8	6	0.6455	0.5344	0.4545	0.4833	0.1507
	R:CCACTCCTCCTGAGAATATAACATG				CF	116 , <i>118</i>	26	3	0.6923	0.4344	0.3846	0.3353	0.1166
					CC	108	10	1	1.0000	0.0000	0.0000	0.0000	NI
					CH	118, 120, 124, 130, 136	9	5	0.4444	0.7124	1.0000	0.6173	-0.4400
SRCRSP005 (Arevalo et al., 1994)	F:GGACTCTACCAACTGAGGTACAAG	NED	800	CA	160, 162 , 166, 170, 172 , 176	55	7	6	0.9	0.1892	0.109	0.1833	0.4255
	R:TGAAATGAAGCTAAAGCAATGC				CF	168 , <i>170</i> , 178	26	5	0.6346	0.5181	0.3846	0.4354	0.2614
					CC	170	10	1	1.0000	0.0000	0.0000	0.0000	NI
					CH	160, 166, 170, 174	9	5	0.3889	0.7516	0.7778	0.6571	-0.0370
SRCRSP008 (Bebbe et al., 1994)	F:TGCGGTCTGGTCTGATTCAC	NED	800	CA	221, 229, 239	55	6	3	0.4455	0.6027	0.6364	0.5108	-0.057
	R:CCTGCATGAGAAAGTGGATGCTTAG				CF	225 , 229	26	2	0.8077	0.3167	0.3846	0.2624	-0.22
					CC	not identified	NI	NI	NI	NI	NI	NI	NI
					CH	219 , 221, 225, 229, 239	9	5	0.5000	0.6928	0.8889	0.6035	-0.3061
Mean					CA	55	6.25	4.75	0.6556	0.449	0.425	0.3884	0.054
					CF	26	3.75	2.75	0.6563	0.4849	0.5144	0.4058	-0.062
					CC	10	1.25	1.125	0.8250	0.1938	NI	0.1802	-0.0385
					CH	9	4.75	3.88	0.5208	0.6373	0.7083	0.5416	-0.1193

Abbreviations: FM – fluorescence marking, PC – primer concentration (nM), T – taxon, IA – identified alleles (species-specific ones are in bold, alleles with the highest frequency are in italic), n – sample size, Ng – numbers of genotypes, Na – number of alleles, MAF – major allele frequency, He – expected heterozygosity, Ho – observed heterozygosity, PIC – polymorphic information content, F – inbreeding coefficient.

dures were carried out in accordance with the laws and ethical guidelines established in the Czech Republic and during the course of regular veterinary work with these animals. All biological samples were stored at -85 °C except for hair bulbs, which were stored in paper bags at temperatures not exceeding 24 °C.

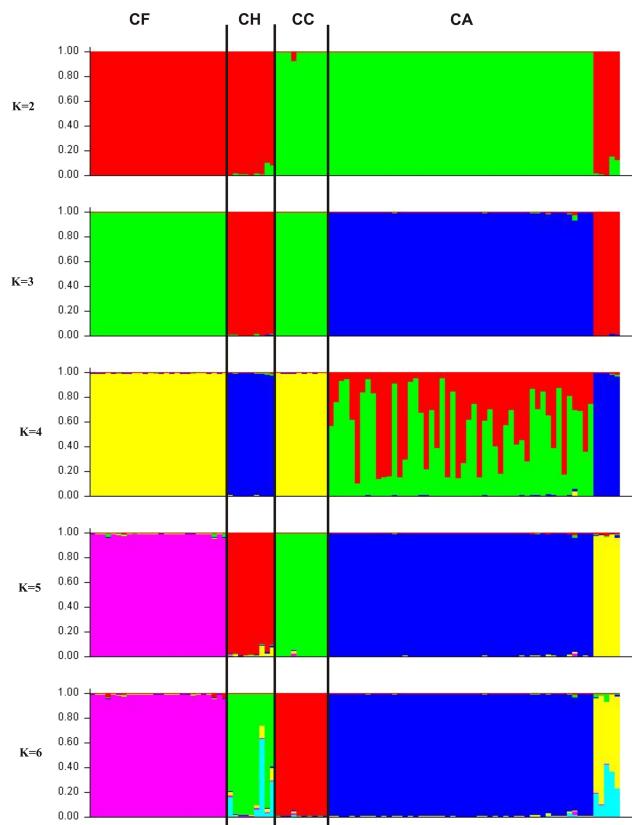
2.2 Microsatellite genotyping and analyses

Genome DNA was isolated by the QIAamp DNA blood kit. Target DNA sequences comprising potential polymorphic loci were amplified by the polymerase chain reaction (PCR).

We tested a modified multiplex typing panel of microsatellite loci according to panels of goat markers for parentage verification tested using the 2001/2002 ISAG comparison test by the ISAG Standing Committee on "Applied Genetics in Sheep and Goats". The panel allows the co-amplification and four-colour detection of eight microsatellite markers (multiplex1 proposed by LGS, Cremona, Italy); for more details see Table 1.

A Veriti thermal cycler (Applied Biosystems) was used for the PCR 8-plex. The total volume of the amplification mixture amounted to 6.25 µL. The reagent concentration

amounted to $1.2\times$ PCR buffer (comprising 15 mM MgCl₂), 336 μ M dNTP mixture, 0.9 U Taq Gold polymerase (AmpliTaq GoldTM, Applied Biosystems), 3 % DMSO, and 10–100 ng/ μ L DNA. Primers of selected microsatellite markers were used in concentrations ranging from 80 to 800 nM (see Table 1). Primer concentration, marking and sequence are listed under Table 1. The following cycling conditions were applied: initial denaturation 95 °C for 4 min, in 31 cycles; 94 °C/30 s, 55 °C/30 s, 72 °C/60 s, final elongation 72 °C 60 min, and termination at 4 °C.


A total of 0.5 μ L of ROX 500 size standard (Applied Biosystems) and 11.5 μ L Hi-DiTM unionised formamide (Applied Biosystems) were added to the amplification product of 0.5 μ L. Samples were denaturised for 5 min at 95 °C and then laid on ice for 5 min. Polymorphism of studied loci was detected with ABI PRISM 310[®] genetic analyser (Applied Biosystems, Foster City, CA, USA). Fluorescent markers were evaluated by GeneScan[®] 3.7 NT and Genotyper[®] 3.7 NT (Applied Biosystems) software.

Basic genetic parameters (see Table 1) were calculated using the PowerMarker v3.25 (Liu and Muse, 2005), exclusion probabilities and combined exclusion probabilities (CEPs) according to Jamieson and Taylor (1997). Deviations from the Hardy–Weinberg and linkage equilibrium were analysed with GENEPOP v.4.2.1 (Rousset, 2008), while phylogenetic relationship and population structuring of studied taxa were detected using MEGA5 (Tamura et al., 2011) and STRUCTURE version 2.3.4 (Pritchard et al., 2000; see also Falush et al., 2003, 2007; Hubisz et al., 2009).

3 Results and discussion

Our data proved the utility of the used microsatellite set for the understanding of genetic variability and fitness of analysed populations (for details see Table 1). For example, we found polymorphism at all loci of CA, CF and CH, but at only two loci of CC (one locus was not amplified). CA exhibits the most species-specific alleles, as well as number of alleles per locus and number of genotypes, followed by CH, CF and CC. Our study enlarges the number of known alleles, for example in CA (Maudet et al., 2004; Glowatzki-Mullis et al., 2007). On the contrary, however, Pokorádi et al. (2006) detected more alleles for CF and Luikart et al. (1999) for CH, probably due the higher sample size. As CH comprise a lot of breeds (Taberlet et al., 2008), our sample of local Czech breeds cannot reflect the diversity of this one properly. Alleles with the highest frequency do not correspond in most cases with species-specific alleles, and the highest average frequency of main alleles was found in CC; it was almost identical in CF and CA, and the lowest frequency was recorded in CH.

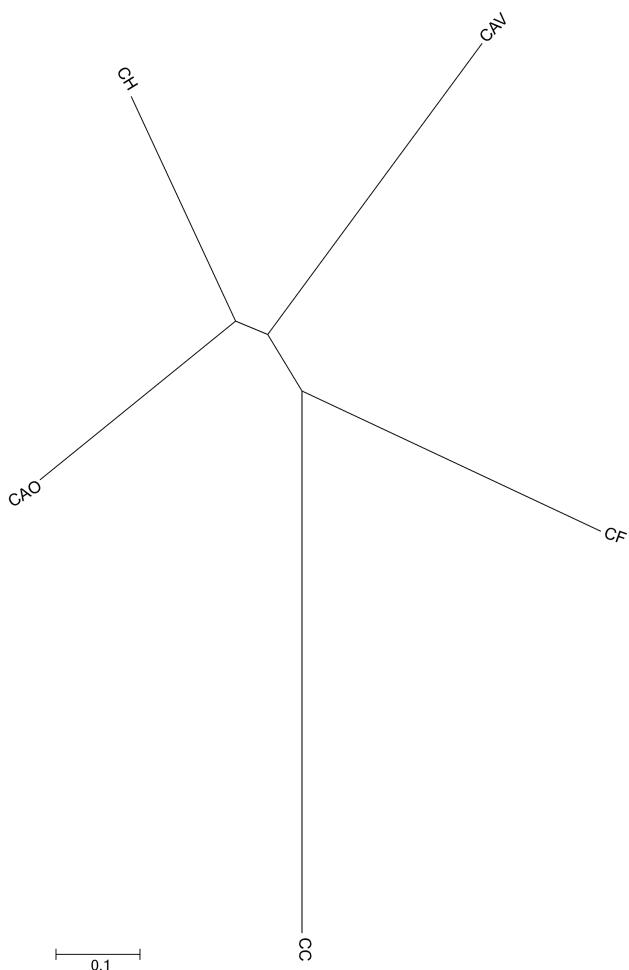

As the heterozygosity is considered one of the main indices of viability and adaptability of animal populations, the average heterozygosity and PIC were highest in the CH

Figure 1. Results of the STRUCTURE analysis of the *Capra* microsatellite markers studied here.

(comparable with Jandurová et al., 2004, and Luikart et al., 1999, specifically in the white short-haired, brown short-haired and Saanen goat breeds) followed by CF (higher than Pokorádi et al., 2006), CA (much higher than CA from the game park in Berne; Saitbekova et al., 1999), and the lowest was recorded in CC (lower than Maudet et al., 2004). Limited genetic variability in CF and CC is certainly associated with a limited number of founders of the captive populations (see Holma, 2007; Fainstein, 2011) and is comparable with populations of *Capra* species with historical bottlenecks and associated depleted genetic variability such as *C. ibex* (detected heterozygosity 0.13–0.4; Maudet et al., 2002; Biebach and Keller, 2009) or *C. walie* (0.35; Gebremedhin et al., 2009). New founders and/or their gametes using the AI procedure are of great conservation importance for their long-term ex situ management.

When assessing the population, the Hardy–Weinberg balance was calculated for CA $\chi^2 = \infty$, df = 16, $P <$ Highly sign.; CF $\chi^2 = 11.5950$, df = 16, $P < 0.7714$; CH $\chi^2 = 7.6063$, df = 16, $P < 0.9597$. However, it was impossible to calculate it for CC. The probabilities of paternity exclusion, one parental genotype unavailable, and parentage exclusion were, for a panel of eight microsatellites, 99.49, 94.81 and 99.99 % respectively in all goat samples.

Figure 2. Topology of neighbour-joining tree showing the genetic relationship among four *Capra* populations using genetic distances for eight microsatellite loci.

All analysed taxa were differentiated by STRUCTURE (Fig. 1) with $K = 5$. Moreover, the CA set is split up in two independent sets: CA from the Vřísek game reserve and CA from the Olomouc zoo. When analysing the polymorphism of studied microsatellite loci, no influence of CH on the CA population from the Vřísek game reserve ($n = 50$) was established. On the contrary, CA from the Olomouc zoo ($n = 5$) shows a distinctive genetic link to CH, as demonstrated by $K = 2$, $K = 3$, $K = 4$, and $K = 6$, although this stock could, based on some historic evidence, have the same link to the Pálava-founding CA population. Based on our evidence, though, this link seems improbable. Our study also indicates that CA from the Pálava population at the Vřísek game reserve is genetically valuable and has no genetic introgression from the CH as was assumed by Anděra and Červený (2009). It is appropriate to point out that the material is incomplete (e.g. in relation to the study of Naderi et al., 2008) and that the whole issue is more complex than work

on very different species and on wild species with no domesticated counterparts, as both species are historically related with possible mutual gene flow. Our study also detected no introgression of domestic goats into the CF stock in the European zoos (Hammer et al., 2008), which points to a high breeding-value of the analysed portion of CF.

The neighbour-joining tree (Fig. 2) shows the differentiation of two lines, namely CA together with CH and CC together with CF. All species exhibit comparable divergences from the ancestral stock, except for CC, which shows more changes unique to that group. The genus *Capra* is relatively young, with speciation still in progress (Hassanin et al., 2012). In effect, the phylogenetic relationships of species within the group depend on the genetic markers used (Luikart et al., 2001, 2006), possibly due to incomplete lineage sorting and/or also former natural hybridisation events (Pidancier et al., 2006). Our results are more similar to the taxa relationships presented in Luikart et al. (2001).

In general, the information presented here indicates some difficulties with historical evidence, for example with respect to the origin and purity of particular individuals, and underlines the need to use genetic methods for valuable science-based conservation management of ex situ populations.

Acknowledgements. We are grateful to all the curators and keepers who assisted us most kindly with the sample collections, to A. Baer for professional language editing, and to two referees, E. Alexandrovna Gladyr and J. Suchomel, for their very valuable comments. The study was supported by project no. OS480111 of the Grant Service of Forests of the Czech Republic and project no. TA02031259 of the Technology Agency of the Czech Republic. The study was also conducted under CEITEC – the Central European Institute of Technology, with research infrastructure supported by the project CZ.1.05/1.1.00/02.0068 financed from the European Regional Development Fund and by grant no. 1G58073 of the Ministry of Agriculture of the Czech Republic.

All procedures were carried out in accordance with the laws and ethical guidelines established in the Czech Republic and during the course of regular veterinary work with these animals. The authors declare that they have no conflict of interest.

Edited by: K. Wimmers

Reviewed by: J. Suchomel and E. Gladyr

References

Allendorf, F. W. and Luikart, G.: Conservation and the genetics of populations, Blackwell Publishing, Oxford, UK, 642 pp., 2007.

Anděra, M. and Červený, J.: Large mammals in the Czech Republic, Distribution, history and protection – 1. Even-toed ungulates (Artiodactyla), Národní muzeum, Praha, Czech Republic, 88 pp., 2009.

Arevalo, E., Holder, D. A., Derr, J. N., Bhebhe, E., Linn, R. A., Ruvuna, F., Davis, S. K., and Taylor, J. F.: Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CRSP-1, SR-CRSP-2, SR-CRSP-3, SRCRSP-4, SR-CRSP-5 loci, *Anim. Genet.*, 25, 202–202, doi:10.1111/j.1365-2052.1994.tb00124.x, 1994.

Bhebhe, E., Kogi, J., Holder, D. A., Arevalo, E., Derr, J. N., Linn, R. A., Ruvuna, F., Davis, S. K., and Taylor, J. F.: Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CRSP-6, SR-CRSP-7, SR-CRSP-8, SRCRSP-9 and SR-CRSP-10 loci, *Anim. Genet.*, 25, 203–203, doi:10.1111/j.1365-2052.1994.tb00125.x, 1994.

Biebach, I. and Keller, L. F.: A strong genetic footprint of the re-introduction history of Alpine ibex (*Capra ibex ibex*), *Mol. Ecol.*, 18, 5046–5058, doi:10.1111/j.1365-294X.2009.04420.x, 2009.

Bibi, F.: A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics, *BMC Evol. Biol.*, 13, 166, doi:10.1186/1471-2148-13-166, 2013.

Bishop, M. D., Kappes, S. M., Keele, J. W., Stone, R. T., Sundén, S. L. F., Hawkins, G. A., Toldo, S. S., Fries, R., Grosz, M. D., Yoo, J., and Beattie, C. W.: A genetic linkage map for cattle, *Genetics*, 136, 619–63, 1994.

Crawford, A. M., Dodds, K. G., Ede, A. J., Pierson, C. A., Montgomery, G. W., Garmonsway, H. G., Beattie, A. E., Davies, K., Maddox, J. F., and Kappes, S. W.: An autosomal genetic linkage map of the sheep genome, *Genetics*, 140, 703–724, 1995.

Ernst, M., Levý, E., Lamka, J., and Matoušková, J.: Microsatellite analysis utilization for Bezoar goat population breeding in the game preserve Vřísek on Forestry administration in the Česká Lípa, GS LČR Rep. 37, Lesy ČR s. p., Hradec Králové, Czech Republic, 2011.

Fainstein, V.: EEP studbook for the East Caucasian Tur *Capra cylindricornis* Blyth, 1841, 14th ed., Tallinn Zoo, Tallinn, Estonia, 28 pp., 2011.

Falush, D., Stephens, M., and Pritchard, J. K.: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies, *Genetics*, 164, 1567–1587, 2003.

Falush, D., Stephens, M., and Pritchard J. K.: Inference of population structure using multilocus genotype data: dominant markers and null alleles, *Mol. Ecol. Notes*, 7, 574–578, doi:10.1111/j.1471-8286.2007.01758.x, 2007.

Frankham, R., Ballou, J. D., and Briscoe, D. A.: Introduction to conservation genetics, Cambridge University Press, Cambridge, UK, 617 pp., 2003.

Gebremedhin, B., Ficetola, G. F., Naderi, S., Rezaei, H.-R., Maudet, C., Rioux, D., Luikart, G., Flagstad, Ø., Thuiller, W., and Taberlet, P.: Combining genetic and ecological data to assess the conservation status of the endangered Ethiopian walia ibex, *Anim. Conserv.*, 12, 89–100, doi:10.1111/j.1469-1795.2009.00238.x, 2009.

Glowatzki-Mullis, M. L., Muntwyler, J., and Gaillard, C.: Cost-effective parentage verification with 17-plex PCR for goats and 19-plex PCR for sheep, *Anim. Genet.*, 38, 86–88, doi:10.1111/j.1365-2052.2006.01550.x, 2007.

Groves, C. and Grubb, P.: Ungulate Taxonomy, Johns Hopkins University Press, Baltimore, USA, 336 pp., 2011.

Groves, C. P. and Leslie Jr., D. M.: Family Bovidae (hollow-horned ruminants), in: *Handbook of the mammals of the World – Hoofed mammals*, Lynx Edicions, Barcelona, Spain, 444–779, 2011.

Hammer, S. E., Schwammer, H. M., and Suchentrunk, F.: Evidence for introgressive hybridization of captive Markhor (*Capra falconeri*) with domestic goat: Cautions for reintroduction, *Biochem. Genet.*, 46, 216–226, 2008.

Hassanin, A., Delsuc, F., Ropiquet, A., Hammer, C., Jansen van Vuuren, B., Matthee, C., Ruiz-Garcia, M., Catzeffis, F., Areskoug, V., Nguyen, T. T., and Couloux, A.: Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes, *C. R. Biol.*, 335, 32–50, doi:10.1016/j.crvi.2011.11.002, 2012.

Heroldová, M.: Trophic niches of three ungulate species in the Pálava Biosphere Reserve, *Acta Sc. Nat. Acad. Scient. Bohem. Brno*, 31, 1–52, 1997.

Holma, P.: ESB studbook for Turkmenian markhor, *Capra falconeri heptneri*, 1st Edn., Helsinki Zoo, Helsinki, Finland, 267 pp., 2007.

Hubisz, M. J., Falush, D., Stephens, M., and Pritchard, J. K.: Inferring weak population structure with the assistance of sample group information, *Mol. Ecol. Resour.*, 9, 1322–1332, doi:10.1111/j.1755-0998.2009.02591.x, 2009.

Jamieson, A. and Taylor, S. C.: Comparisons of three probability formulae for parentage exclusion, *Anim. Genet.*, 28, 397–400, 1997.

Jandurová, O. M., Kott, T., Kottová, B., and Ceznovková, V.: Seven microsatellite markers useful for determining genetic variability in White and Brown Short-Haired goat breeds, *Small Ruminant Res.*, 52, 271–274, doi.org/10.1016/S0921-4488(03)00258-X, 2004.

Kemp, S. J., Hishida, O., Wambugu, J., Rink, A., Longer, M. L., Ma, R. Z., Da, Y., Lewin, H. A., Barendse, W., and Teale, A. J.: A panel of polymorphic bovine, ovine and caprine microsatellite markers, *Anim. Genet.*, 26, 299–306, 1995.

Kogi, J., Yeh, C. C., Bhebhe, E., Burns, B. M., Ruvuna, F., Davis, S. K., and Taylor, J. F.: Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CRSP-11, SR-CRSP-12, SR-CRSP-13, SR-CRSP-14 and SR-CRSP-15 loci, *Anim. Genet.*, 26, 449–449, 1995.

Kumar, S., Dixit, S. P., Verma, N. K., Singh, D. K., Pande, A., Kumar, S., Chander, R., and Singh, L. B.: Genetic diversity analysis of the Gohilwari breed of Indian Goat (*Capra hircus*) using microsatellite markers, *Am. J. Vet. Sci.*, 4, 49–57, doi:10.3844/ajavsp.2009.49.57, 2009.

Liu, K. and Muse, S. V.: PowerMarker: an integrated analysis environment for genetic marker analysis, *Bioinformatics*, 21, 2128–2129, doi:10.1093/bioinformatics/bti282, 2005.

Luikart, G., Biju-Duval, M. P., Ertugrul, O., Zagdsuren, Y., Maudet, C., and Taberlet, P.: Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (*Capra hircus*), *Anim. Genet.*, 30, 431–438, 1999.

Luikart, G., Gielly, L., Excoffier, L., Vigne, J. D., Bouvet, J., and Taberlet, P.: Multiple maternal origins and weak phylogeographic structure in domestic goats, *P. Natl. Acad. Sci. USA*, 98, 5927–5932, doi:10.1073/pnas.091591198, 2001.

Luikart, G., Fernández, H., Mashkour, M., England, P. R., and Taberlet, P.: Origins and diffusion of domestic goat inferred from DNA markers, Example analyses of mtDNA, Y chromosome, and microsatellites, in: Documenting domestication, New genetic and archaeological paradigms, University of California Press, Berkeley, USA, 294–305, 2006.

Ma, R. Z., Beever, J. E., Da, Y., Green, C. A., Russ, I., Park, C., Heyen, D. W., Everts, R. E., Fisher, S. R., Overton, K. M., Teale, A. J., Kemp, S. J., Hines, H. C., Guérin, G., and Lewin, H. A.: A male linkage map of the cattle (*Bos taurus*) genome, *J. Hered.* 87, 261–271, 1996.

Maudet, C., Luikart, G., and Taberlet, P.: Development of microsatellite multiplexes for wild goats using primers designed from domestic Bovidae, *Genet. Sel. Evol.*, 33, 193–203, 2001.

Maudet, C., Miller, C., Bassano, B., Breitenmoser-Würsten, C., Gauthier, D., Obexer-Ruff, G., Michallet, J., Taberlet, P., and Luikart, G.: Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex [*Capra ibex (ibex)*], *Mol. Ecol.*, 11, 421–436, doi:10.1046/j.0962-1083.2001.01451.x, 2002.

Maudet, C., Beja-Pereira, A., Zeyl, E., Nagash, H., Kence, A., Özüt, D., Biju-Duval, M.-P., Boolormaa, S., Coltman, D. W., Taberlet, P., and Luikart, G.: A standard set of polymorphic microsatellites for threatened mountain ungulates (Caprinae, Artiodactyla), *Mol. Ecol. Notes*, 4, 49–55, doi:10.1046/j.1471-8286.2003.00563.x, 2004.

Naderi, S., Rezaei, H.-R., Pompanon, F., Blum, M. G. B., Negriti, R., Naghash, H.-R., Balkiz, Ö., Mashkour, M., Gaglioni, O. E., Ajmone-Marsan, P., Kence, A., Vigne, J.-D., and Taberlet, P.: The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals, *P. Natl. Acad. Sci. USA*, 105, 17659–17664, doi:10.1073/pnas.0804782105, 2008.

Pidancier, N., Jordan, S., Luikart, G., and Taberlet, P.: Evolutionary history of the genus *Capra* (Mammalia, Artiodactyla): discordance between mitochondrial DNA and Y-chromosome phylogenies, *Mol. Phyl. Evol.*, 40, 739–749, doi:10.1016/j.ympev.2006.04.002, 2006.

Pokorádi, J., Kúbek, A., Bulla, J., Trakovická, A., and Chrenek, P.: Utilisation of DNA microsatellite method for identity establishment of Screw-horn Goat (*Capra falconeri heptneri*) and Adax Nubian (*Addax nasomaculatus*), *Acta Fytotechnica et Zootechnica*, 9, 81–83, 2006.

Pritchard, J. K., Stephens, M., and Donnelly, P.: Inference of population structure using multilocus genotype data, *Genetics*, 155, 945–959, 2000.

Rousset, F.: Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux, *Mol. Ecol. Resour.*, 8, 103–106, doi:10.1111/j.1471-8286.2007.01931.x, 2008.

Saitbekova, N., Gaillard, C., Obexer-Ruff, G., and Dolf, G.: Genetic diversity in Swiss goat breeds based on microsatellite analysis, *Anim. Genet.*, 30, 36–41, doi:10.1046/j.1365-2052.1999.00429.x, 1999.

Shackleton, D. M.: Wild sheep and goats and their relatives. Status survey and conservation action plan for Caprinae, IUCN/SSC Caprinae Specialist Group, Gland, Switzerland, 390 pp., 1997.

Taberlet, P., Valentini, A., Rezaei, H. R., Naderi, S., Pompanon, F., Negriti, R., and Ajmone-Marsan, P.: Are cattle, sheep, and goats endangered species?, *Mol. Ecol.*, 17, 275–284, doi:10.1046/j.1365-294X.2007.03475.x, 2008.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S.: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, *Mol. Biol. Evol.*, 28, 2731–2739, doi:10.1093/molbev/msr121, 2011.

Vaiman, D., Schibler, L., Bourgeois, F., Oustry, A., Amigues, Y., and Cribiu, E. P.: A genetic linkage map of the male goat genome, *Genetics*, 144, 279–305, 1996.

Valdez, R.: *Capra falconeri*, IUCN Red List of Threatened Species: www.iucnredlist.org (last access: 10 September 2014), 2008.

Weinberg, P.: *Capra cylindricornis*, IUCN Red List of Threatened Species: www.iucnredlist.org (last access: 10 September 2014), 2008.

Weinberg, P., Jdeidi, T., Masseti, M., Nader, I., de Smet, K., and Cuzin, F.: *Capra aegagrus*, IUCN Red List of Threatened Species: www.iucnredlist.org (last access: 10 September 2014), 2008.

Witzenberger, K. A. and Hochkirch, A.: Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species, *Biodivers. Conserv.*, 20, 1843–1861, doi:10.1007/s10531-011-0074-4, 2011.

Yeh, C., Kogi, J. K., Holder, M., Arevalo, E., Derr, J., and Linn, R. A.: Caprine microsatellite dinucleotide repeat polymorphisms at the SR-CRSP 21, 22, 23, 24, 25, 26, and 27 loci, *Anim. Genet.*, 28, 370–371, 1997.