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Abstract

Population-averaged and subject-specific models are available to evaluate count data when
repeated observations per subject are present. The latter are also known in the literature as
generalised linear mixed models (GLMM). In GLMM repeated measures are taken into account
explicitly through random animal effects in the linear predictor. In this paper the relevant
GLMMs are presented based on conditional Poisson or negative binomial distribution of the
response variable for given random animal effects. Equations for the repeatability of count
data are derived assuming normal distribution and logarithmic gamma distribution for the
random animal effects. Using count data on aggressive behaviour events of pigs (barrows,
sows and boars) in mixed-sex housing, we demonstrate the use of the Poisson »log-gamma
intercept, the Poisson »normal intercept« and the »normal intercept« model with negative
binomial distribution. Since not all count data can definitely be seen as Poisson or negative-
binomially distributed, questions of model selection and model checking are examined.
Emanating from the example, we also interpret the least squares means, estimated on the
link as well as the response scale. Options provided by the SAS procedure NLMIXED for
estimating model parameters and for estimating marginal expected values are presented.
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Abbreviations: GLMM: generalised linear mixed models; GnRH: gonadotropin-releasing hormone; LSM: least square
means; ML: maximum likelihood; MNB: multivariate negative binomial; NAE: number of initiated
aggressive events; NB: negative binomial; NBinN: negative binomial normal; OLS: ordinary least
squares; PA: population-averaged; PoiLG: Poisson log-gamma; PoiN: Poisson normal; SE: standard
errors; VC: variance-covariance

Introduction

Count data arise when the trait outcome is determined through a count process, whereby a
count variable denotes the number of discrete occurrences of an event of interest. The case
of repeated measurements occurs when the count trait on the same subject is recorded at
several time points, usually consecutively. One widely-cited example is the number of epileptic
seizures experienced by patients within 14 days, recorded over 8 weeks (Thall & Vail 1990).
Count data do not fulfil the requirements of normally distributed data. Thus, for example, the
variances of response variables, whose realisations are the observations, are deterministic
functions of the expected values. In the case of continuous, normally distributed outcomes,
the mean and the variance are entirely separate parameters. For normally distributed data,
there is no relationship between the mean and the variance, while for Poisson distributed
data, the variance is equal to the mean. The variance of the outcomes is thus assumed to
be of the form dictated by the distribution. In the linear model assuming normality and
heterogeneity, the residual variances are considered as additional model parameters to be
estimated.

Two fundamentally different model approaches are available for the statistical evaluation
of repeated observations per subject. In the subject-specific model (Breslow & Clayton 1993,
McCulloch & Searle 2008), the assumption is that the observations for the given random
effects of the subjects satisfy a Poisson or a negative binomial distribution. With the help of
a link function, the relationship between the linear predictor and the conditional expected
value is provided on the response scale. Since count traits can only take non-negative integer
values and thus the expected value is always positive, the logarithm function is used as a link
function and thus the exponential function is used as the inverse link function. Considering
qualitative and quantitative explanatory factors in the linear predictor follows, analogous
to the theory of the linear model, with the help of effects and regression coefficients,
which can be both fixed as well as random. Repeated measures are taken into account via
random subject effects, which are explicit components of the linear predictor. A further
differentiation of the subject-specific model is given by making distributional assumptions
for the random effects in the linear predictor. In the literature, subject-specific models are
also termed generalised linear mixed models (GLMMs). On the response scale the GLMMs
provide conditional expected values for the count trait, for example for an animal whose
effect corresponds to the average of the herd or population. If statements about an animal
randomly chosen from the population are desired, then a conversion of the conditional
expected values to marginal expected values must be made. This conversion is carried out
by considering the conditional expected values to be random variables and by forming
the expected value in the distribution of the random effects. In the case of non-linear link
functions, the conversion is only possible in special cases (Ritz & Spiegelman 2004).
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Apart from the GLMM, one may also use so-called population-averaged (PA) models to
evaluate the count data with repeated measures per subject (Liang & Zeger 1986; Hardin
& Hilbe 2003). In PA models a direct connection is made between linear predictors and
marginal expected values by using a link function. Consequently, the PA models are also
denoted as marginal models. To account for correlation due to repeated observations per
subject, a so-called working correlation matrix is used. For this correlation matrix a certain
structure must be predefined to select the covariance structure of the model. Variance-
covariance (VC) matrices for the observation vectors per subject can be formed from the
correlation matrix, but only the diagonal elements of this VC matrix are derived from the
distribution assumption for the observation. In this paper only subject-specific models, that
are models with random effects in the linear predictor, are used to evaluate the count data.
On particular it is shown how, for count data, the covariance between repeated observations
per subject can be calculated on the response scale. Formulae for repeatability are derived,
depending on the distribution assumption, not only with respect to the observations but
also to the random effects.

To estimate the model parameters in GLMM, the maximum likelihood (ML) methods
based on numerical integration according to Gaussian-Hermite quadrature, the integral
method based on the Laplace approximation and the pseudo-likelihood methods based, for
instance, on the linearization of the data exist (see McCulloch & Searle 2008). In this paper the
ML method is used to estimate parameters including the Gaussian-Hermite quadrature. If the
numerical integration technique for setting up the log-likelihood function works well, this
method will be preferable to the pseudo-likelihood method. In a study based on stochastic
simulation, this hypothesis was confirmed (Thamm 2012).

In chapter ,Models for correlated count data” we present a brief review of models for
count data with repeated measures. Chapter “Calculation of repeatability” includes formulas
of correlations between repeated measures of counts. In chapter “Estimation of the model
parameters” we discuss aspects of parameter estimation in GLMM by using the procedures
GLIMMIX and NLMIXED of SAS. An example illustrates the application of the models with
field data on the aggressive behaviour of fattening pigs. The field data are used to illustrate
the options of the residual analysis in GLMM. Not every count trait can be assumed to have
a Poisson distribution. Thus, questions on model selection and checking are extensively
illustrated for the analysis of correlated count data.

Models for correlated count data
The Poisson »normal intercept« model

Let y, be the observation of subject i (i=1,...,a) at time j (j=1,...,n). Observations y; are
regarded as realisations of random variables Y, .For the given random effect u, from subject
i, the YU. are assumed to be Poisson-distributed random variables. Thus, it follows that:

Y,|u,~Poi(A) with log()=x.B+u, M

In (1), B is the vector of the fixed model parameters and x; is the design-vector for the j-th
observation of subject i.



4 Milenz et al.: Analysis of correlated count data exemplified by data on aggressive behaviour of boars

From (1) the following conditional expected value is obtained:
A= E(YI.}.| u)=z - exp(x;B) with z=e )

If we assume u, ~ N(0,0°) then model (2) will be named as Poisson »normal intercept« model
(PoiN). In PoiN, the marginal expectation, the variance and the covariance can be expressed
as (Molenberghs et al. 2007):

p,=E(Y,) =E {E(Y|u )} = exp(x B +3-07)
Var(Y,) =+ €”=1) - 3)
cov(Y,,Y,)=(e"=1) -, - p, with j=*

Due to the fact that (e”—1) >0, the random variables Y, show an over-dispersion on the

original scale. Only for the conditional random variables Yq|“; do the expected value and
variance agree.

The Poisson »log-gamma intercept« model

If the following approach is used in (2)

— 676 6-1, p—6z;
z, Gamma(é, 1/6) = ) z' e

withE(z)=1andVar(z)=1/6=0Q

or if we assume that v, in (1) satisfies a log-gamma distribution, then by (2) and (4) the Poisson
»log-gammac intercept model (PoilG) is given. According to Solis-Trapala & Farewell (2005)
it follows that:

u,;=E(Y,) =exp(x.B)
Var(Y,)=p,+ 0 5)
cov(Y,Y,.) =0, - . with j#*

If we consider Y=, .Y and ;= (“ﬂ, Hin) then it can be shown that Y satisfies a

multivariate negative binomial (MNB) distribution whose density function can be given as
follows (see Fabio et al. 2012):

(A @) r@4y,) @41,
¥,~ MNB11,0) = iy, | 1, 0) = : ©
[Jro o

In (6) the following is true: ©>0; y, =)_§yij and u, =j:Zn"uij

The log-likelihood function of model (5) and (6) can be found in the appendix.
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The negative binomial »normal intercept« model (NBinN)

Apart from the Poisson distribution, count data can be modelled using the negative binomial
(NB) distribution. The NB distribution depends on an extra parameter compared to the
Poisson distribution, which allows over-dispersion to be taken into account. To distinguish it
from the MNB distribution, this parameter will be denoted by a (s. equation 7). The density
function is given from (6) by setting n=1 and ®=a. The repeated measures per subject are
modelled under the assumption of normally-distributed animal effects as follows:

Y, |u~NB (A, with log(A)=x;B+u, and u,~N(0,0) (7)

In (7) the marginal variances and covariances can be calculated as (see Carrasco 2010;
Molenberghs et al. 2007):

;= expx;B+3-0°)
Var(Y,) =, +[e”(1+a) = 1] - 7 8)

cov(Y,Y,.)=(e"=1)-p, - . with j=*

Calculation of repeatability

The correlations between two measures on the same animal can be derived with the help
of the marginal variances and covariances given by (3), (5) and (8). For the PoiN, PoiLG and
NBinN models, the following expression is obtained:

corr(Y,, ¥,.) = 1 Hy Ky )
2 2
(TR R TR RTA
In(9)A,A,and j; are given by:
_ exp(xl./',B) for PoilG (10)
7 |exp(x,B +0.50%) for PoiNand NBinN
O  for PoilG [0) for PoilG 1)
A ={(e~1) for PoiN and  A,={ (=1 for PoiN
(e’=1) for NBinN [e”(1+a)-1] for NBinN

If, for instance, animals are randomly distributed to treatments with different mean values,
the correlations will be dependent on the considered treatment. If in (9), for instance, an
average estimated value is used for {4, count traits can be compared to one another in their
repeatability. If pyis replaced by , the derived equation (from Foulley & Im 1993) will follow
for heritability in the broad sense of a Poisson distributed trait, as seen for the special case of
(9). The prerequisite for this is that variability between animals is only genetically caused. If
random permanent environmental effects occur, equation (9) will only provide an upper limit
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for the heritability. A further possibility to eliminate the dependence of the fixed model effects
of qualitative explanatory factors in equation (9) can be found in Carrasco & Joyer (2005).
These authors derive the marginal expected value given through equation (10) under the
assumption that all model effects are random and satisfy a normal distribution. The variances
of qualitative explanatory factors are estimated using sums of the squared fixed effects. This
approach allows the definition of the intra-class correlation coefficients in the linear model to
be transferred to the more comprehensive classes of the GLMM (Carrasco 2010).

Estimation of the model parameters

Estimating the parameters in the Poisson normal (PoiN), in the Poisson log-gamma (PoilLG)
and in the negative binomial normal (NBinN) model occurs through the use of the ML method,
i.e. through setting up and maximising the log-likelihood function. For this, numerical
integration based on the Gaussian-Hermite quadrature formula is necessary. The parameter
estimation using the ML method for the models PoiN and NBinN can be carried out in SAS (SAS
Institute Inc., Cary, NC, USA) with the procedures GLIMMIX and NLMIXED. Characteristics of
GLIMMIX are: three methods of parameter estimation (Gaussian quadrature, Laplace integral
approximation and a pseudo-likelihood method based on linearization of the data), a class
statement for qualitative covariates, high complexity of the linear predictor and the covariance
structure, but only testing of linear contrasts and of differences of least square means (LSM)
on the link scale. Advantages and restrictions of NLMIXED are: parameter estimation with
Gaussian quadrature only, user-defined likelihood functions are supported (PoiLG and MNB
can be implemented), calculation of standard errors for nonlinear parameter functions by
using the delta method (testing differences of marginal means can be implemented easily,
see appendix). Problems with NLMIXED are: no class statement is available, the complexity of
covariance structures is restricted. If only testing of LSM (from model PoiN or NBinN) on the
link scale is desired, GLIMMIX should be the procedure of choice.

For the random effects in the linear predictor, only a normal distribution can be supposed
in NLMIXED by default. If model PoilLG is to fit with NLMIXED, the following relationship can be
used (Nelson et al. 2006): Let a~N(0,1) then p=0(a) has a uniform distribution, whereby ®()
is the distribution function of the standard normal distribution. Let F'() denote the inverse
Gamma distribution. Then, g=F"(p) is gamma distributed. The commands in NLMIXED for
gamma random effects are given in the appendix. Using the adaptive Gaussian quadrature
can lead to convergence problems in the case of the PoiLG model. Therefore, Nelson et al.
(2006) recommend the non-adaptive Gaussian quadrature (NOAD option) with an increase in
the number of quadrature points. Better and more stable convergence is achieved by setting
up the log-likelihood of the MNB distribution (s. appendix) and maximising this. This approach
can be used within NLMIXED if, for each subject (in this example an animal), a dataset with
all of the repeated observations per animal is generated. The dataset must also include all
qualitative and quantitative factors that occur in the linear predictor. Since NLMIXED does
not have a class-statement, numbering all qualitative explanatory variables is recommended.
Full numbers, beginning with one, were assigned to the successive levels of the explanatory
factors. This enables an assignment of field elements to the levels of explanatory factors in
NLMIXED. Implementing the multivariate negative binomial distribution in NLMIXED can be
found in the appendix for an example from the aggressive behaviour of boars.
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An illustrative example
Field data on the aggressive behaviour of fattening pigs

The conventional castration of male piglets without anaesthesia has been recently
questioned due to animal welfare concerns. As an alternative to surgical castration, active
immunisation against the endogenous gonadotropin-releasing hormone (GnRH) has been
established to avoid boar taint in male pigs due to sexual maturation and to reduce levels of
associated aggression and sexual behaviour (Schmidt et al. 2010). Following two vaccinations
with an interval of at least 4 weeks, the function of the testicles is temporarily suppressed
and thus the production of the unwanted sex-specific boar taint is avoided. In the following,
normally castrated boars will be denoted as barrows and those in which the sexual-function
is suppressed by immunisation will continue to be referred to as boars. We study the effect
that different sex combinations in fattening groups have on the frequency of agonistic
encounters between boars. The following 4 combinations of single-sex and mixed-sex
housing with 30 animals in each group are described:

Treatment 1: 30 boars

Treatment 2: 15 boars, 15 sows

Treatment 3: 15 boars, 15 barrows

Treatment 4: 10 boars, 10 sows, 10 barrows.
Treatments 1 and 2 were examined in four pens each, treatment 3 was examined in three
pens and treatment 4 took place in one pen. All 12 pens were located in one room. The
distribution of the treatments within the pens took place randomly. The vaccination of
the uncastrated male piglets took place on the 1st and 69th day after the piglets had been
stabled in the fattening room. The suppression of the testicle function begins a few days
after the second immunisation with GnRH. Apart from recording the quality and classical
performance traits such as body weight and daily weight gain (not reported in this paper),
traits were also recorded that described the agonistic behaviour through video observations.
Six recorded days (time points) were evaluated during an interval of 14 days. To evaluate
agonistic behaviour, the number of initiated aggressive events (NAE) per boar and the number
of mounting attempts (not considered for analysis in this paper) per boar in two selected
daylight hours were determined. The NAE per boar within two hours of the day provides a
count trait with a maximum of six repeated measures per subject. The arithmetic mean per
treatment and time are listed in Table 1. A usable video recording was not available for all
boars in the 11th and 15th h. Recordings for treatment 4 at time point 4 were completely
missing.

Table 1

Average values for the number of initiated aggressive events per boar dependent on treatment and time
Time

Treatment 1 2 3 4 5 6

1 0.783 0.342 0.267 0.218 0.235 0.050

2 0.948 0.893 0.464 0.263 0.351 0.000

3 0.633 0.356 0.600 0.533 0.295 0.140

4 2.200 0.400 0.800 X 0.200 0.100
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Statistical models

For the analysis of NAE a GLMM was used. Let y,, be an observation of treatment / (i=1,...,4)
at time point k (k=1,...,6) on boar j from pen / (/=1,...,n). The four treatments were randomly
allocated to 12 pens in one room. The number of pens varied from 1 to 4. The pens were
therefore considered as randomization units. Thus, in a first step of model selection, pens
were included as random effects in the model. In a GLMM framework the following linear
predicator was used

My =H+a, + b,+ Uy with (b, u,)'~N(O,D) and D=Diag(c, 02) (12)

il
where u is the general mean (or intercept), a, is the fixed effect of k-th time point within i-th
treatment, b, is the random effect of /-th pen within i-th treatment and u, is the random
effect of j-th boar from I-th pen within i-th treatment. Under the assumption of Poisson as
well as negative binomial distribution, the use of pseudo-likelihood methods (GLIMMIX with
option method=rspl) lead to convergence problems during the parameter estimation. When
using the Laplace method in GLIMMIX, the pen variance is estimated by zero. Therefore, in
the next step of model selection the pen effects of (12) were taken as fixed. In this case, the
statistical analysis using (12) showed that there are no significant differences between the
fixed pen effects (p-value of F-test equal to 0.39 for Poisson and to 0.26 for NB distribution).
The pens are nested within treatments. Therefore, the time-depending treatment effects can
be expressed as a linear combination of time-by-pen effects. Thus, the LSM for comparing
the treatments within time cannot be analysed. One possible solution of modelling time-
specific pen effects is to use random regression models. The time of recording has to be
considered as continuous covariate t. For example, if a linear time trend is assumed, then
linear predictor can have the following simple form:

Ny (t)=(B,+0b,)+(B,+b,) - t+ Uy (13)

Here, B, and B, are treatment-specific fixed regression coefficientsand b, and b, are normally
distributed pen effects of intercept and slope. Perhaps, the simplest assumption in (13) is

(b, b,,u,)~N0O,D) with D=diag(c;,07,0?) (14)

ijl 0

When the Laplace method of GLIMMIX is used, the pen variance in (14) is estimated to be zero.
The consideration of linear regression functions with treatment-specific slopes was discarded
to describe the increase in average values between time points 2 and 3 (see Table 1). The
model selection steps can be summarized as follows: In principle, a model with random pen
or time-by-pen effects should be used. Because of the non-significance of the fixed main pen
effects, no such effects were fitted. We also tried a simple random regression on time by pen.
This model also yielded a zero variance for pens. As a consequence, pen effects were dropped
from the analysis. The pen effects in (12) can be interpreted as permanent environmental
effects. For NAE no such environmental effects could be detected. The analysis of NAE can
be carried out using PoiGL, PoiN and NBinN from section Models for correlated count data. If

negative binomial distribution is assumed, GLMM will be given as follows:
YVilu,~NB@M, ,a) with A, =EY,|u) )
and log\,)=p+a,+u, with u,~N(00;)
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In model (15) the marginal expected values (or marginal means) were obtained as:

u,=E, {E(Yijk| ulft=expu+a,+05-0)) and u= é'k;“ik (16)

The number of aggressive events is given by (16), which we can expect (at time k in a pen of
treatment i) of a randomly chosen boar from the population. The correlations between two
observations at time k and k* on the same boar from treatment i can be calculated according
to equation (9) as follows:

Ay e

M = 17)
Mﬂik+A2'u5< ’ ‘/uik*+)‘2' IJIZk*

Checking the distribution assumptions

Not every count trait can be described by a Poisson or negative binomial distribution.
This is particularly true for the case that zero outcomes compared to the other outcomes
occur with a relatively high frequency in the random sample. Thus, in the first step of the
model checking, a comparison of the observed relative frequencies is carried out with the
probabilities predicted from the model. In addition, the distribution parameter)\ijk of model
(15) was estimated for each record of the sample. Following this, estimating the probability
P(Y,-,Em) with m=0,1,...,M was carried out for each record using the density function of
the Poisson or NB distribution. The largest number of aggressive events initiated by one
boar within two hours was eight. Thus, M was set equal to 8. Predicted probabilities of
count outcomes between 0 and 8 were calculated by averaging across all records. In Table
2 the predicted probabilities and the relative frequencies observed in the random sample
are summarized (in percentages). The described approach requires strictly independent
observations. Only the sum of independent Poisson distributed random variables is again
Poisson distributed. The assumption of independence can be satisfied if the described
analysis is carried out separately for each time point. According to Table 2, around 77.1 % of
the boars did not initiate an aggressive event during the two observed hours.

Table 2
Observed absolute and relative frequencies in %, as well as predicted probabilities in % using PoiN and NBinN
for the number of initiated aggressive events per boar

Number of initiated aggressive events per boar

0 1 2 3 4 5 6 7 8
Absolute 914 170 67 23 3 2 4 1 1
Relative 771 14.3 5.65 1.94 0.25 0.17 0.34 0.08 0.08
PoiN 74.2 19.6 4.50 1M 0.32 0.1 0.05 0.02 0.01
NBinN 77.2 15.8 4.42 1.49 0.58 0.25 0.12 0.06 0.03

One or two aggressive events were carried out by about 14.3 % or 5.7 % of the boars. More
than two aggressive events were only carried out by 2.9% of the boars. The observed
relative frequencies were particularly well predicted by NBinN, i.e. by model (15). The
results listed in Table 2 show that the use of Hurdle (Mullahy 1986, Mielenz et al. 2011) or
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zero-inflated models (Lambert 1992) is not necessarily required to describe the many zeros
in the existing data.

Marginal means and repeatability

The LSM of i (see equation 16), also known as marginal means of the i-th treatment depending
on the three investigated models, are contained in Table 3. NLMIXED is used to calculate the
LSM and its standard error. In this procedure calculating averages can be allocated to the
response scale. NLMIXED uses the approximate delta method to calculate the standard errors
(SE). The greatest SE of all marginal means were found with NBinN.

Table 3
LSM (xstandard error) of the treatments by averaging on the response scale compared to the observed means

(yobs)

Model
Treatment PoilG PoiN NBinN Vs
1 0.319+0.032 0.323+0.033 0.319+0.035 0.316
2 0.494+0.065 0.493+0.067 0.491£0.070 0.487
3 0.423+0.064 0.417+0.064 0.419+0.067 0.426
4 0.740+0.196 0.720+0.195 0.737+0.225 0.740

The estimated differences between the treatments and the results of the Wald t-tests are
given in Table 4. Observations were not available for treatment 4 at time point 4. Thus, this
treatment was dropped from comparison of means across the six time points. In PoiN and
NBinN, the number of degrees of freedom is equal to the number of independent subjects
minus one. This selection agrees with the standard within the NLMIXED procedure. The PoilLG
and MNB models (see section The Poisson »log-gamma intercept« model) are equivalent.
Since MNB has better convergence characteristics, the LSMs of the treatments were calculated
using this model. In MNB the degrees of freedom are equal to the number of animals minus
the number of model parameters. According to Table 3, the lowest NAE can be expected of
boars from treatment 1 (housing type 1). From Table 4 it follows that the difference between
treatment 1 and treatment 2 is significantly different from zero in all three models with an
error probability of 5 %.

Table 4
Differences of the LSM (tstandard error) and p-values derived from the Wald t-test for comparison of
treatments across time for given degrees of freedom (df)

MNB (df=209) PoiN (df=232) NBinN (df=232)
treatment difference p-value difference p-value difference p-value
1-2 —0.175+£0.073 0.018 —0.171+0.074 0.022 —0.172+0.078 0.029
1-3 —0.104+0.071 0.147 —0.094£0.072 0.191 —0.101£0.075 0.183
2-3 0.071£0.091 0.436 0.076+0.092 0.409 0.071+0.097 0.462

For a boar from treatment 2, a significantly higher number of initiated aggressive events
can be expected compared to the boars from treatment 1. Predictions can be calculated for
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the random boar effects in model (15). Since 233 boars were included in the trial and they
are presumed to be unrelated, the distribution of the boar effects is approximately normal.
The estimations of correlations between sequential measurements using PoiN and NBinN
are found in Table 5. The estimated correlations between time points 1 and 2 vary between
the treatments for PoiN from 0.193 to 0.317 and for NBinB from 0.046 to 0.066. In PoiN the
correlations calculated by averaging over the treatments have a 95% confidence interval
(presuming a normal distribution) with positive lower limits. The correlations between
successive estimated time points with PoiLG and PoiN are in the same range. Therefore, Table
5 includes results for PoiN and NBinN.

Table 5
Correlations estimated with PoiN and NBinN between sequential time points for the number of initiated
aggressive events per boar and treatment (trt)

PoiN NBinN
trt. rlZ r23 r34 r45 r56 r'\Z r23 I'34 r45 r56
1 0.205 0.131 0.108 0.102 0.051 0.048 0.035 0.030 0.028  0.015
2 0.317 0.247  0.149 0.130 0.000  0.066 0.054 0.037 0.034  0.000
3 0.193 0184  0.205 0.153 0.089  0.046 0.045 0.050 0.040  0.025
4 0.289 0212 X X 0.064  0.061 0.051 X X 0.019
T 0.251 0.193 0.154 0.128 0.051 0.055 0.046 0.039 0.034  0.015

se(r)  0.057 0.049  0.040 0.035 0.019 0.038 0.032 0.027 0.023 0.011

Akaike information criterion and residual analysis

According to Table 5 the correlations between repeated measures per boar with PoiN and
NBinN have widely different estimates. The question then becomes how to select a suitable
evaluation model. Apart from the results from Table 2, comparing the AIC values (Akaike
1974) of the three models (see Table 6) provides further information. In treatment 4 no
observations existed for measuring time 4. Thus, just 23 independent model parameters
exist for the combination of treatments and time points. Since one parameter of variability
is explained in both PoiN and PoilLG and two parameters are explained in NBinN, 24 or 25
independent model parameters ensue. According to Table 6, PoiLG and PoiN have similar
statistics. A much better fit is provided by NBinN.

Table 6
Number of model parameters (p) with —2 multiplied log-likelihood function, criteria of the model fit and
estimates for selected model parameters

Statistics ~ Model parameters
Model p -2logL AIC BIC (0] a 6?
PoilG 24 1757.0 1805.0 1887.8 0.4337 X X
PoiN 24 1756.0 1804.0 1886.8 X X 0.4027
NBinN 25 1708.0 1758.0 1844.3 X 1.0910 0.1519

A further possibility for checking the model is provided through the graphical representation
of absolute, scaled and standardised residuals, not only dependent on the linear predictor,
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butalso on the fitted means (McCullagh & Nelder 1989). For example, Pearson residuals, which
represent scaled absolute residuals, are well-known and easy to calculate. The conditional
Pearson residuals for model (15) have the following form:

e~ i)
rf= —E—2—  wijthj =exp(@+a +0i.) (18)
ijk /Var(yij |U/-j) ijk ik ij
In (18), the variance function in the denominator depends on the distribution assumption. In
the case of negative binomial distribution, the following is true:

Var(y,, |u) =@, +0- (2, (19
The so-called residual plots are obtained by removing the observation number, the linear

predictor, a possible continuous explanatory variable, or the estimated conditional expected
values on the abscissa and the residuals on the ordinate.
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Figure 1

Pearson Residuals for model PoiN and NBinN with smoothed trend plotted against the LSM of Hy, (on the
response scale)

If smoothing the residuals (by using local regression) yields a trend, the choice of variance
function, link function or the linear predictor will be wrong (Fahrmeier & Tutz 1994). Figure
1 shows that the dependence of the variance on fitted means for large values in PoiN is
small and is adequately described in NBinN. Another possibility of checking the model is to
compare the empirical variance function, based on ordinary least squares (OLS) residuals,
with the theoretical variance functions of the models PoiN, PoiLG, and NBinN. In the Poisson
model, for example, the variance is a function of the means and of the variance of the random
boar effects. The variance functions of the three models can be found in equations (3), (5)
and (8) of section Models for correlated count data. In the first step of the comparison, the
observations are evaluated with a linear model by considering the fixed effects for the
combination of treatment, time and pen. The empirical variance function is obtained by
smoothing the squared OLS residuals against fitted means using local regression.
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Figure 2
Empirical variance function (trend), squared OLS residuals, variance functions of the models and differences
between LSM and OLS-means for the models per treatment and time point

To verify the empirical variance function (solid line), the variance functions generated by
PoiN (dotted line) and NBinN (dashed lines), as well as the squared OLS residuals (circle signs)
are all plotted against the OLS means (Figure 2). In the example, the number of observations
ranged from 10 to 120 per treatment and time point. Thus, the differences between the
LSM, which were estimated by equation (16), and the respective OLS-means were compared
graphically (Figure 2). For the PoiN or NBinN models, the absolute deviations lay below 0.074
or 0.049, respectively. The empirical variance function and the NBinN variance function
showed very good visual agreement for means below 1.2. The correlations listed in Table 5
were also checked using OLS residuals. For this purpose the six repeated observations per
boar were interpreted as different traits. The correlations between the OLS residuals of this
multiple trait model and the repeatability estimated using NBinN agree quite well.

Interpretation of LSM on the response scale

Following the results of section Akaike information criterion and residual analysis, our analysis
continues only with the consideration of model NBinN. Special care is required in interpreting
the results for models with random effects. In Table 7, the results of comparing the LSM
between the treatments are shown for time points 1, 2 and 3. According to the definition
of the LSM from equation (16), the comparisons refer to the differences on the response
scale averaged over all boars in the population. A comparison is made for the difference
of the number of aggressive events from two treatments, which can be expected by
averaging across the distribution of the random boar effects. This interpretation is achieved
by transforming the conditional means (taking into account the variability between the
boars) into marginal means. Consequently, the standard errors of the two marginal means
differences are thus dependent on the common variance-covariance matrix of the estimated
fixed model parameters and of the estimated boar variance.
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Table 7
Differences of the LSM (+standard error) and p-values for comparing the treatments at time point (TP) 1,2 and
3, estimated using NBinN

TP=1 TP=2 TP=3
Treatment  difference P-value difference P-value difference P-value
1-2 —0.204+0.264 0.411 —0.572+0.281 0.043 0.346+0.231 0.136
1-3 0.145+0.262 0.582 —0.013+0.127 0.920 0.185+0.229 0.421
1-4 —1.372+0.938 0.145 —0.077+0.270 0.776 —0.012+0.442 0.978
2-3 0.348+0.288 0.227 0.559+0.295 0.059 0.389+0.258 0.134
2-4 —1.169+0.946 0.218 0.495+0.378 0.192 0.191+£0.458 0.677
3-4 —1.517+£0.946 0.110 —0.064+0.284 0.822 —0.157+0.457 0.731

A further possibility of transforming from the link to the response scale is provided by setting
the animal effect to zero. In this case, the standard error of the conditional means can only
be approximated by using the variance-covariance matrix of the fixed-effects parameter
estimates. In the case of the boar data, we obtain estimations for the number of aggressive
events that is expected for a boar that corresponds to the population’s average. By setting
the boar effects to zero, the comparison delivered a p-value of 0.043 or 0.059, respectively,
for the differences in treatments 1 and 2, or 2 and 3 at time point 2. This result agrees with
the claims of Table 7. The estimation of means has only been carried out on the response
scale up to this point. If average values and their comparisons on the link scale are created,
significant differences can be found at time point 2, between treatments 1 and 2 as well
as between treatment 2 and 3 with a significance level of 5%. Testing of hypotheses on
the link scale is the standard in the SAS procedure GLIMMIX. In this paper, GLIMMIX was
used to control the convergence behaviour of the optimisation algorithm implemented in
NLMIXED by comparing the log-likelihood functions and the estimated model parameters.
The difference of marginal means cannot be tested efficiently with GLIMMIX. The advantage
of testing on the link scale is that the approximate delta method must not have to be used for
calculating the standard error. A difficulty is the interpretation of differences on the response
scale if significant differences are found on the link scale. If we generate LSM for treatment
i (i=1,...,4) on the link scale, in (15) a, must be averaged for all time points and u, must be
averaged for all animals from pens of treatment i. The means of treatment i are expressed
as n=p+a +u_on the link scale. In the equation, a dot in place of a subscript indicates that
all values of that subscript have been summed over. If a bar is placed over a dot notation
expression, it means division by the number of levels across which the sum was computed.
To simplify the notation we limit the comparison of treatments 1 and 2 in the following. In
order to be able to test the hypothesis An=(n,—1,)=0 it is usually assumed that the related
difference of the average animal effects of treatments 1 and 2 is equal to zero. Thus, on the
response scale the following is formally true:

u,=exp(n,)=e"-exp(n,) with An=(a,-a,) (20)

Thus, a multiplicative connection exists between the means u, and u,=exp(n, ). If An<0, then
0<exp(An)<1.The mean of treatment 2 is exp(An)-times smaller than the mean of treatment 1.
For An>0, it follows that y, is exp(An)-times larger than u,. A difference on the link scale can be
associated with a multiplicative factor on the response scale. If the difference is significantly
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different from zero, then the related factor can be formally seen to be significantly different
from one. The estimated values of y, (or u,) are generated in the respective SAS procedures
under the assumption of 4, =0 (bzw. u,=0). The estimations thus refer to animals whose
effects equate to the mean of the population. No statements can be made about the
differences from the marginal means given by (16) with the approach described here.

General discussion

The GLMM theory is valuable for evaluating count traits that are repeatedly recorded on
the same subject. In this model, the repeated measures are taken into account by including
random animal effects in the linear predictor. The observations for given animal effects are
assumed to be realisations of Poisson or negative-binomially distributed random variables.
In the so-called population-averaged models, the repeated measurements are depicted
by a working correlation matrix. The assumption of normally distributed animal effects is
then dropped. As a result, no log-likelihood function is available for selecting the model or
estimating the model parameters. The convergence of the generalised estimating equations
(GEE) in the solution becomes problematic if complex correlation structures are considered,
or the correlation matrices are, for instance, seen to be dependent on the treatments. In this
paper the repeated measurements (as is usual in animal breeding) are explicitly taken into
account in the linear predictor. Thus, different correlation matrices can be specified for each
treatment at every time point for the repeated observations per animal.

Count traits described by random variables, which satisfy a Poisson or NB-distribution,
characteristically have variances that are functions of the expected values. Consequently,
the correlations between repeated observations per animal are dependent on the expected
values and the variance between the animals. Not every count trait must satisfy a Poisson
or NB distribution. Thus, as part of the model selection, verification must be made as to
whether the observed relative frequencies of the count outcomes are in accordance with the
probabilities derived from the assumed distribution.

Aside from determining assumed distributions with respect to the observations and the
random animal effects, considering qualitative and quantitative explanatory factors in the
linear predictor is a central task of the model selection. The likelihood ratio test and the
information criteria are available for this. With the help of local regression it must be decided
which quantitative explanatory variable can be taken into account with a suitable, at least
quasi-linear, regression function in the predictor. At this stage of the model selection the
competitive models can be put into sequence with the help of the AIC values. A prerequisite
of this recommendation is that if presenting random effects in the linear predictor, the model
parameters must also be estimated during the setup and maximisation of the log-likelihood
function. A residual analysis should be carried out on the selected model, as in the case of
the linear models. The residual analysis for checking models (mainly known in connection
with the use of linear mixed models) must be modified since in GLMM no normal distribution
can be assumed for the scaled or standardised residuals. In GLMM, the residuals must have
only the expected value of zero, independent of the observation number, quantitative
covariables, or the estimated means for the level combination of qualitative explanatory
factors. This characteristic can be checked in residual plots with the help of local regression,
i.e. through smoothed trend curves.
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Using a count trait exemplified by behavioural data derived from pigs with six consecutive
observations per animal, it is shown which model approach within the GLMM with repeated
measurements is best-suited for analysis. Assuming a Poisson or negative binomial
distribution, a different (6x6) correlation matrix can be formally calculated for each of the
four treatments investigated. In the GLMM, the conditional expected values are linked to the
linear predictor by a so-called inverse link function. Converting the conditional to marginal
expected values is demonstrated in the example. Marginal expected values take into account
the existing variability between the animals and permit statements to be made, for example,
about the influence of different treatments by averaging over all animals in a population. The
basis for calculating the marginal expected values is the calculation of the averages over the
levels of qualitative explanatory factors on the response scale. If means and a comparison
of means are calculated on the link scale, the statements will refer to those animals whose
effects correspond to the population’s average. Using data on the aggressive behaviour of
pigs, the paper illustrates and discusses which interpretations have significant differences on
the links scale when it is transformed back to the response scale.

Emanating from the example it was shown how the empirical variance function, estimated

with OLS residues and the variance functions of the GLMM, can be used for model verification.
The presented graphical residual analysis can be extended to other types of residuals, such as
the deviance or the Anscombe residuals. Additional diagnostic approaches can be found in
McCullagh & Nelder (1989) and in Collett (1991).
The framework of generalised linear mixed models is available for analysing correlated
count data. Repeated measures cannot be treated as independent observations because the
degrees of freedom of statistical tests would be overestimated. If the correlation structure of
repeated measurements on the same animal isignored, an inappropriate covariance structure
has to be used for testing the fixed effects. In the case of continuous, normally distributed
traits, the mean and the variance are separate parameters. For counts following a Poisson
or negative binomial model, there is a relationship between the variance and the mean.
Thus, for model fitting and checking, the mean-variance link has to be taken into account.
If count data were analysed using linear models under the assumptions of normality and
variance homogeneity, the standard errors of the estimates would be incorrect and the Type
| error of the statistical tests could dramatically exceed the nominal significance level a. The
probability of incorrectly rejecting the null hypothesis can be larger than the nominal a value
and statistical conclusions from the studies are invalid. Therefore the previous statements
have to be tested by stochastic simulation.
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Appendix
Loglikelihood function of the multivariate negative binomial distribution (MNB):
logL(B, @|y) = X log f(y, |, ®)

with log f(y |u,®) =j§ y;log(u,) +y, log(®) + logl (0" +p,)
~logr (")~ (" +, ) log(1 +@- . )3 log (y,}
j=1

where y,_.=,_z; y; and N,F._Z; H;

Implementation of Model PoilLG in NLMIXED of SAS:
proc sort data=boar; by animal;
proc nimixed data=boar method=gauss noad;
p_i=cdf(’normal’a_i);
g_il=gaminv(p_i, 1/theta_1);
g_i=theta_1*g_il;
eta=<linear predictor>+log(g_i);
mu=exp(eta);
model trait~poisson(mu);
random a_i~normal(0,1) subject=animal;
run;

NLMIXED commands for the boar data using MNB
/* DF=number of animals — model parameters=233—(23+1)=209 */
/* one record per boar */
proc nlmixed data=sum?1 df=209;
array b{4,6} b1-b24;

/* trt=4 and tp=4 does not exist */
parms b1-b21=0.1 b23=0.1 b24=0.1 phi=0.5;
bounds phi>0;

b22=.;

im=bdlg;

array y{6} y1-ye6;

ysum=sum(of y1-y6);

mup=0.0;

yp=0.0;

loglik1=0.0;

const=0.0;

do jm=1to 6;

if(y{jm}A=.) then do;
eta=b{im,jm};
mup=mup-+exp(eta);
yp=yp+y{im};
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loglik1=loglik1+y{jm}*eta;
const=const+lgamma(1+y{jm});

end;

end;

loglik2=yp*log(phi)+Igamma(1/phi+yp);
loglik3=—Igamma(1/phi)—(1/phi+yp)*log(1+mup*phi);
loglik=—const+loglik1+loglik2+loglik3;

model ysum~general(loglik);

run;

NLMIXED commands for the boar data using NBinN
proc sort data=boar; by animal;
proc nlmixed data=pigsf;
array b{4,6} b1-b24;
/* trt=4 and tp=4 does not exist */
parms b1-b21=0.1 b23=0.1 b24=0.1 phi=1.0 su2=0.2;
bounds phi>0, su2>0;
b22=.;
y=begRK_11_15;
im=bdlg;
km=mzp;
loglik1=0.0;
const=0.0;
/* linear predictor */
eta=b{im km}+uy;
mu=exp(eta);
loglik1=loglik1+y*eta;
const=const+lgamma(1+y);
loglik2=y*log(phi)+Igamma(1/phi+y);
loglik3=—Igamma(1/phi)—(1/phi+y)*log(1+mu*phi);
loglik=—const+loglik1+loglik2+loglik3;
model begRK_11_15~general(loglik);
random u~normal(0,su2) subject=tier_nr;
/* estimation of marginal means */
array bm_mul[4,6];
doi=1to4;
doj=1t06;

bm_muli,jl=exp(bli,jl+0.5%su2);

end;
end;
/* testing of differences */
estimate 'd12_1" (bom_mu[1,11-bm_mu[2,1]);
estimate 'd13_1" (bom_mu[1,1]-bm_mul[3,1]);
estimate 'd23_1' (bom_mu[2,1]-bm_mu[3,1]);
run;



