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Abstract
Phenotypic variation can partly be explained by genetic variation, such as variation in single 
nucleotide polymorphism (SNP) genotypes. Genomic selection methods seek to predict 
genetic values (breeding values) based on SNP genotypes. To develop and to optimize these 
methods, simulated data are often used, which follow a rather simple genotype-phenotype 
map. Is the conventional approach for data simulation in this field an appropriate basis 
to optimize such methods in view of experimental data? Here, we present an alternative 
approach, striving to simulate more realistic data based on a genotype-phenotype map 
which includes a simulated metabolome level. This level was used to simulate genetic values, 
implicitly including additive and non-additive genetic effects, whereas in a conventional 
approach additive and dominance effects were explicitly simulated and assembled to 
genetic values. For both simulation approaches, different scenarios regarding numbers of 
quantitative trait loci (QTLs) and SNPs were analysed using fastBayesB as prediction method. 
We observed that our alternative map showed a smaller prediction precision (at least 
3.75 %) compared to the conventional approach in all investigated scenarios. The observed 
degree of linearity is at least 94.12 % of the conventional approach or less. Additionally, we 
present results for different simulated data and experimental data to allow a comparison 
on a purely conceptual level. Concluding, simulating a more complex genotype-phenotype 
map including a molecular level, allows to study processing of variation from the genetic 
to the phenotype level in more detail and may prepare the ground for modern methods of 
genomic selection.
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Introduction
In the field of genomic selection, data are frequently simulated to compare different 
methods of genetic evaluation and to optimize methods. These studies have in common 
that the involved genotype-phenotype map based on a simple linear function. We term this 
simulation approach »conventional approach«. It is not known to which degree simulated 
data following the conventional approach are realistically mirroring the biology of real traits, 
sufficient for the development of methods for genetic value or phenotype prediction. In 
genomic selection, it is common to simulate SNP genotypes involving several hundreds or 
thousands of generations using a mutation-drift model, which leads to a more or less realistic 
linkage disequilibrium (LD) between the simulated marker loci. This is usually applied to 
equally sized chromosomes (e.g. Meuwissen et al. 2001, Calus & Veerkamp 2007, Habier et 
al. 2007). Calus et al. (2008) have shown that different spacing of markers has an influence 
on LD, which in turn has an impact on the precision of genetic value prediction. To obtain 
a more realistic dataset in simulations, we implement actual lengths of chromosomes and 
use SNP marker positions from an existing SNP annotation of the bovine genome. Genetic 
effects are randomly drawn at predefined marker loci, which simulate quantitative trait loci 
(QTLs). Various types of genetic effects are discussed to simulate a genetic value considering 
an additive and/or non-additive (dominance and/or epistasis) mode of gene action (Long 
et al. 2010, Ober et al. 2011). Note that epistasis is considered in a statistical sense in these 
contributions, based on the definition of Fisher (1918). The individual genetic value is 
calculated as sum of these effects depending on the realized QTL genotypes. Hill et al. (2008) 
reviewed that findings based on experimental data seem to point to prevailing importance 
of additive genetic variance, explaining more than 50 % and in most cases close to 100 % 
of the genetic variance. Molecular biology, however, proved that gene action is organized 
in interactive pathways, regulatory networks, which imply non-additive gene interactions 
and probably non-additive genotype-phenotype mapping (Moore 2005). Here, epistasis is 
considered in the biological sense (Cordell 2002). The importance of epistasis for mechanisms 
which underlie the genotype-phenotype map is not yet known (Moore 2005, Carlborg et 
al. 2006). It is suspected, however, that epistatic mechanisms may account for much of the 
causal genetic determination currently unexplained (e.g. Zuk et al. 2012). 

We drafted an alternative simulation approach designed to be more realistic with 
respect to the complexity of the genotype-phenotype map: a simulated metabolome level 
is integrated on top of the conventional genotype-phenotype map to model biological 
epistasis. Towards this objective, we adopt an approach from the field of systems biology. 
Mendes et al. (2003) inspired us to model a metabolite level, determining enzyme parameters 
by marker status at specified marker positions. Mendes et al. simulated different gene-
expression datasets based on artificial gene regulatory networks. These network models are 
composed of coupled ordinary differential equations (ODEs), where each equation describes 
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the production and degradation dynamics of a specified gene product. Biological variation 
is realized by adding random values to the kinetic parameters. Liu et al. (2008) adopted this 
approach and followed Mendes et al. (2003) by incorporating QTL variation to influence 
the kinetic parameters in their gene regulatory network. Based on these two approaches, 
we make use of a curated and ready parameterized SBML model (Systems Biology Markup 
Language; Hucka et al. 2003) of the central carbohydrate metabolism (Holzhütter 2004), 
which contains enzymes also found in cattle, to realize our simulated metabolome level 
(download from http://biomodels.org/, Le Novère et al. 2006), in the following termed »SBML 
approach«. The SMBL model was selected and considered to be adequate, because among 
the few existing curated metabolic network models it belongs to the few larger alternatives, 
especially as no curated metabolic SBML model for cattle exists. Our SBML approach allows 
investigating a more complex genotype-phenotype map, considering an additional level of 
gene expression in a broader sense. Additive and non-additive genetic effects are implicitly 
simulated. That means that varying one parameter of an enzyme has an effect on the 
interactions within the simulated system, affecting diverse metabolite concentrations, not 
only those catalysed by the respective enzyme. This offers the opportunity to investigate to 
which extent a change on the genotypic level leads to a different outcome of the metabolic 
level. We compare our SBML approach, which is also clearly artificial, with the conventional 
approach, where additive and dominance genetic effects are explicitly simulated.

Regarding the choice of a model for analysis, methods known from the field of genomic 
selection include genetic effects modelled with a purely additive model (e.g. Meuwissen et 
al. 2001, Daetwyler et al. 2010 and Zhang et al. 2010). However, Lee et al. (2008) as well as 
Toro & Varona (2010) have shown that the prediction precision of genetic values increased if 
an additive-dominance model is used compared to a purely additive model. It has become 
more and more common to extend existing genomic selection methods to include non-
additive effects or to use non-parametric methods (Long et al. 2010, Ober et al. 2011). The fast 
Bayesian algorithm was proposed by Meuwissen et al. (2009) and extended to include non-
additive effects by Wittenburg et al. (2011). In our study, we apply the extended fast Bayesian 
algorithm (fastBayesB), modelling additive and dominance effects. 

Our focus of interest is to compare precision of prediction among the two simulation 
approaches and also to evaluate goodness of model fit. To illustrate the respective analysis 
results also for an example of experimental data, we investigated an experimental dataset for 
three different milk traits of 1 307 SNP-genotyped Holstein Friesian cows.

Material and methods
Genome: SNPs selection and positions

A bovine genome-wide SNP dataset was modelled in the style of Illumina Bovine SNP 50K 
SNP chip (Illumina Inc., San Diego, CA, USA). From this chip, we used all SNPs with annotated 
position according to Btau4.0 (The Bovine Genome Sequencing and Analysis Consortium 
et al. 2009) resulting in 52 276 SNPs. Chromosome lengths were retrieved from database 
Ensembl cattle (Ensembl 2008) to check the plausibility of SNP positions. Three SNPs were 
omitted because they were outside the corresponding chromosome. Single nucleotide 
polymorphism positions were linearly converted from the physical map (given in physical 
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unit base pair, bp) to the genetic map (genetic unit centiMorgan, cM) using a chromosome-
wise scaling factor based on chromosome lengths in cM from the database »marc-USDA 
cattle« (United States Department of Agriculture 2008). On the basis of the genetic distance 
between two adjacent loci, the recombination rate between them was determined, using 
the Haldane mapping function (Haldane 1919). 

Population: mutation-drift model

Four hundred generations of a mutation-drift model with a constant effective population 
size Ne=100 (50 sires, 50 dams) were simulated employing random mating. In the founder 
generation, all alleles were denoted as zero and from one generation to the next generation 
each locus had the chance to mutate once with a mutation rate of 2.5×10−3. A mutated 
allele was labelled as one. The mutation rate and the number of simulated generations were 
determined in a preliminary study (Melzer et al. 2010b) to obtain an adequate simulated LD 
(Hill & Robertson 1968). Following the 400 initial generations, four additional generations 
were simulated without mutation and the population size was increased from 100 to 1 000 
animals. Here, a 50 half-sib mating design was applied (1 sire mated with 20 dams). Generations 
401 and 402 were used as training set (first offspring generation) and generations 403 and 
404 as test set (second offspring generation). 

Simulation and analyses set-up for simulation approaches

The following simulation steps were applied. The number of QTLs (nQTL) was determined 
based on our metabolome-level model (Holzhütter 2004). It is an erythrocyte metabolism 
non-linear ODE system model for human which includes glycolysis (including the 2, 
3-bisphosylglycerate shunt) and pentose phosphate pathway. For all involved enzymes, it 
was verified whether they occur in cattle, using the databases KEGG cattle (Kanehisa & Goto 
2000) and Ensembl cattle. While all 38 enzymes of this metabolome-level were simulated 
numerically, 23 enzymes covering parts of glycolysis, gluthathione and pentose phosphate 
pathways in cattle were selected to be influenced by 23 QTLs. In addition, to work with 
larger numbers of QTLs, we used the 10-fold quantity of QTLs (nQTL=230, see details below). 
The positions of QTLs were chosen randomly from all simulated SNPs with a minor allele 
frequency (MAF) of at least 0.02 in generation 400. Furthermore, a reduced SNP dataset was 
created from the complete SNP dataset (nSNP=52 273), where every 10th SNP was taken, but 
QTL positions were retained (nSNP=5 227). Combining the different numbers of SNPs and 
QTLs resulted in four simulation scenarios. Phenotypes were simulated based on different 
choices for broad-sense heritability H2 ∈ {0.1, 0.3, 0.5}. Values of H2 were similar to narrow-
sense heritability (h2) estimated for different milk traits (Gregory & Grandin 2007). For each 
scenario and heritability the set-up was replicated 100 times. 

The prediction precision (ρ) is defined as correlation between simulated (test set) and 
predicted genetic values. We also investigated the impact of all 23 QTLs on each metabolic 
outcome via regression analysis. In addition, the goodness of model fit was evaluated for 
all training datasets for all scenarios and heritabilities, where the correlation between fitted 
values and residuals were determined using the function cor.test in R (R Development Core 
Team 2010).
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Simulating genetic value and phenotype - conventional approach

Following the conventional approach, the phenotype for an animal was simulated as: 

yi =       (Xijaj + Dij dj ) + ei	 (1)

where i ∈ {1, ..., n} is the animal index.  Xij represents the design matrix for the additive effect 
aj and Dij is the design matrix for the dominance effect dj. Entries in the design matrices 
depend on the marker genotypes: Xij=±1 and Dij=0 for homozygous (+1 means homozygous 
for the mutated alleles) and Xij=0 and Dij =1 for heterozygous individuals at locus j. The 
simulated additive effect was drawn from a gamma distribution with shape parameter 
α=0.42 and scale parameter β=2.619 in case of 23 QTLs and β=8.282 in case of 230 QTLs, 
following Meuwissen et al. (2001). The sign of the additive effect was randomly drawn with 
equal chance. The dominance effect was calculated as product of the additive effect and 
the degree of dominance, which was drawn from a normal distribution with mean m=0.193 
and variance τ2=0.097 (Bennewitz & Meuwissen 2010). The genetic value for an animal was 
composed as sum of locus-specific genotypic effects as in equation (1). Furthermore, genetic 
values of the training set, also for the test set, were separately standardized to obtain a 
simulated genetic variance σg

2=1. The phenotype for an animal was obtained by adding an 
error ei to the genetic value. The error was drawn from a normal distribution N(0, σe

2), for 
which the variance was determined according to the chosen H2∈{0.1, 0.3, 0.5}.

Simulating genetic value and phenotype - SBML approach

For the SBML approach, we simulated a metabolome level between genotype and phenotype. 
The transition from the genotype to the metabolome level was realized as follows: a QTL 
influenced a specific kinetic parameter kij, in our case mostly the maximum reaction rate 
(Vmax) of a specific enzyme. This means that the kinetic parameter changed depending on 
the genotype of the QTL coded in Xij. In detail, kij∈{ψ−50 %, ψ, ψ+50 %}, following Holzhütter 
(2004), corresponded to Xij∈{−1, 0, 1}, if the sign of the additive effect was positive in the 
conventional approach. In the other case, the order of the values of the kinetic parameter 
was reversed, kij∈{ψ+50 %, ψ, ψ−50 %}. Here, ψ was the default value of the kinetic parameter 
in the originally parameterized SBML model. The following enzyme kinetics were affected: 
vRibPepi_Vmaxv21, vPK_Vmaxv12, vHEX_Vmax1v1, vBPGM_kDPGMv8, vTPI_Vmaxv5, 
GAPDH_Vmaxv6, vPFK_Vmaxv3, vLDHNADH_Vmaxv13, vPPRPPS_Vmaxv25, vRibPiso_
Vmaxv22, vAK_Vmaxv16, vENO_Vmaxv11, vGPI_Vmaxv2, vALD_Vmaxv4, vBPGP_Vmaxv9, 
vPGK_Vmaxv7, vATPase_kATPasev15, vPGM_Vmaxv10, vGSSGRD_Vmaxv19, vTrAld_Vmaxv24, 
vTrKet1_Vmaxv23 and vG6PDH_Vmaxv17. All other parameters remained unaffected. The 
SBML model was implemented as numeric simulation of the ODE system for the respective 
kinetic parameter settings using Matlab R2009b (MATLAB, Release 7.9.0.529 (R2009b), The 
MathWorks Inc., Natick, MA, USA) and the Matlab toolbox SimBiology R2009b. The SBML 
model was simulated until the metabolite concentrations reached the steady-state. After test 
runs, the maximum number of iterations (time) was set to 500. On the basis of the standardized 
equilibrium metabolite concentrations, we simulated the phenotype for an animal as: 

∑
nQTL

j=1
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yi =       (Pil ) + ƒi	 (2)

Here, Pil depicts the matrix of equilibrium metabolite concentrations, where i∈{1, ..., n} is the 
animal index and l∈{1, ..., q} denotes the index for equilibrium metabolite concentrations 
belonging to specific enzymes influenced by simulated QTLs. The equilibrium concentrations 
belonging to those metabolites catalysed by a specific enzyme were summed up, resulting 
in the specific metabolic outcome for simulated QTLs. Further, q represents the total number 
of metabolite concentrations; in some cases two concentrations were influenced by one 
enzyme. Also in some cases more than one column of P belongs to the same metabolite, 
if this metabolite is catalysed by more than one of the investigated enzymes. The sum over 
all equilibrium metabolite concentrations or the sum of all 23 metabolic outcomes results 
in the genetic value for an animal. Note that for this simulation approach of a genotype-
phenotype map, the step from genotype to the metabolite concentrations is non-additive, 
whereas from the metabolite concentrations to the genetic value a purely additive step is 
implemented. Similar to the conventional approach, the genetic values for training set and 
test set were standardized separately. The phenotype was obtained by adding an error ƒi, 
which was drawn from a normal distribution with mean zero and residual variance σƒ

2. The 
residual variance was again determined according to the chosen H2∈{0.1, 0.3, 0.5}. 

Two sizes of SBML models were implemented, a 23-QTL model and a 230-QTL model. For 
the 230-QTL model, the original model was replicated 10 times, yielding 230 independent 
QTLs. For each replicate, the 23 enzymes available in cattle were simulated as QTLs as 
outlined above.

Experimental data and analyses set-up

Our experimental dataset compromises 1 307 Holstein Friesian cows from 18 agricultural 
holdings in Mecklenburg-Western Pomerania. From these cows, we obtained genome-wide 
SNP genotypes (Illumina Bovine SNP 50K). Milk traits were measured during the standard 
milk performance test at State Control Association for Quality Inspection (LKV, Güstrow, 
Germany). Milk samples were taken between the 20th and 120th day of the first lactation. 
More details can be found in Melzer et al. (2010a). Each cow had less than 10 % missing SNP 
genotypes. Single nucleotide polymorphism data pre-processing included several steps: 
First, SNPs with unknown positions were deleted. Thus, 52 255 SNPs were delivered to further 
quality checks. Second, SNPs were excluded if MAF<1 % and if Hardy-Weinberg equilibrium 
(HWE) was not fulfilled (P-value<10−4, Samani et al. 2007) or if a SNP locus had more than 
10 % missing values over all cows. In our experimental dataset, 263 SNPs were not in HWE, 
7 233 SNPs did not fulfil the MAF criterion, 900 SNPs had more than 10 % missing values and 
780 SNPs showed a combination of these properties, such that 43 079 SNPs were kept. The 
rarely missing SNP genotypes were imputed using Beagle v3.2 (Browning & Browning 2007). 
Phased SNP data were also obtained via Beagle and implied an average LD between adjacent 
markers of r2=0.21. Comparative investigations of simulations regarding the LD in training 
sets, excluding SNPs with MAF less than 1 % (in average 5 688 SNPs), showed an average 
r2=0.14. The average LD in test sets was r2=0.15 after discarding SNPs with MAF less than 

∑
q

i=1
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1 % (in average 5 826 SNPs). Figure 1 shows the LD for the experimental dataset and for an 
example of a simulated dataset after filtering the SNPs.

The graphic shows the distribution of LD as correlations between adjacent loci for (A) experimental dataset, 
(B) example simulated dataset.

Figure 1
Comparison of linkage disequilibria between experimental and simulated data

Three milk traits were chosen: fat (%), casein (%) and pH value. Milk traits were standardized 
and corrected for following systematic effects: agricultural holdings (ah), milk test day (stp) 
and linear and quadratic regression on lactation time-point (ltp). The following linear model 
was fitted: 

y = ah × stp + ltp + ltp2 + ∈	 (3)

and the obtained residuals were used for further analyses. For comparative purposes, h2 

was estimated based on the sire-model using the R package nlme (R Development Core 
Team 2010, Pinheiro et al. 2009). The sire-model included the same effects as model (3) plus 
a random effect for sires to account for similarities among half-sibs. Estimation for fat (%) 
h2=0.23, casein (%) h2=0.24 and pH value h2=0.38. 

To allow a conceptual comparison between milk traits and simulated datasets, 1 307 of the 
2 000 simulated animals (training set) were randomly selected for each simulation approach. 
The following criteria were chosen: H2=0.3, nSNP=52 273 and nQTL={23, 230}. Investigations 
were limited to H2=0.3, because chosen milk traits had similar values of h2. For all datasets, 
the prediction precision was obtained by using a 10-fold cross-validation (Hastie et al. 2009), 
for which the dataset was split into 10 equally-sized training sets and corresponding test 
sets. This implementation was followed for the sake of comparability, because no separate 
experimental test set was available. 

Here, the prediction precision (ρ) is defined as correlation between estimated genetic 
values and phenotypes. The goodness of model fit was evaluated visually for the whole 
dataset involving all investigated traits (simulated and experimental). 
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Predicting genetic values using fastBayesB

Prediction of genetic values was based on using the genotypes and phenotypes from the 
training set to estimate the genetic effect sizes. These genetic effect sizes were combined 
with the genotype from the test set to estimate the genetic value. As appropriate choice 
for our studies, we considered the fastBayesB method (Meuwissen et al. 2009), which is 
an iterative fast Bayesian approach to estimate additive effects. An extended version of 
this method, including non-additive effects, is described in Wittenburg et al. (2011). We 
implemented a fastBayesB analysis considering additive and dominance effects. The additive 
and dominance effects are re-parameterized to prevent the estimation of covariances 
between them. For this orthogonal decomposition of the genetic values, the method of 
Álvarez-Castro & Carlborg (2007) is applied as in Wittenburg et al. (2011). The fastBayesB 
algorithm involves prior assumptions for genetic effects. The prior distribution of a genetic 
effect is a mixture of the double exponential distribution and the point mass at zero. The 
probability of having a zero genetic effect at some locus j∈{1, ..., n} is 1-γ. Hence, γ represents 
the proportion of QTLs to SNPs and the algorithm requires a specification of this parameter.  
As the true number of QTLs for a given trait is unknown in principle, the following set of 
plausible values for γ∈{0.1, 0.05, 0.025, 0.01, 0.005, 0.001, 10−4, 10−5} was tested for each run of 
fastBayesB. The resulting variation of prediction precision in the sets was evaluated to mirror 
the sensitivity of the algorithm to different choices of γ. The optimal γ was determined over 
the corresponding replicates, resulting in largest mean prediction precisions. The genetic 
variance σg

2 was determined as additive variance σa
2 plus dominance variance σd

2.
The maximum number of fastBayesB iterations was set to 1 000. Also, SNP alleles with 

MAF<0.01 were excluded from the analysis, but SNP alleles which were not in HWE were kept.

Results 
Comparison of conventional approach versus SBML approach

To obtain an optimal choice of the parameter γ, which was required for the fastBayesB 
estimation algorithm, different γ-values were implemented to analyse the four simulation 
scenarios and for three values of H2. In general, it was observed that not every γ-value is 
appropriate for each scenario and heritability in both conventional and SBML approach. For 
extreme choices of data or parameters, the fastBayesB algorithm aborts, e.g. for nSNP=52 273 
and nQTL=23, each value of H2 and γ=0.1, more than 74 % of the replicate runs aborted for both 
approaches. 

In Table 1, we list prediction precisions, simulated and estimated variance components and 
corresponding standard deviations for all scenarios and heritabilities regarding the optimal 
γ-value for both approaches. In general, nSNP=5 227 showed a larger prediction precision than 
nSNP=52 273. In addition, nQTL=23 showed a larger prediction precision than nQTL=230. The 
quantity of QTLs had more influence on the prediction precision than the quantity of SNPs. In 
more detail, in all investigated scenarios it was observed that the mean prediction precision 
was at least 3.75 % lower for the SBML approach compared to the conventional approach. 
Estimated genetic variance components approached the true values for increasing values of 
simulated heritability. The estimated proportions of additive variance to total genetic variance 
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(σa
2/σg

2) were high compared to the proportion of dominance to total genetic variance. The 
estimated additive genetic variance σa

2 can be used to evaluate the degree of the linearity of 
both simulation approaches, which is at least 5.88 % lower for the SBML approach compared 
to the conventional approach for all investigated scenarios. Figures 2 A-B show the simulated 
and estimated additive and dominance effects for an example dataset in the conventional 
approach based on H2=0.3, nQTL=23 and nSNP=52 273. It was observed that large simulated 
genetic effects were better detected than small genetic effects by the fastBayesB method. 
In comparison, Figures 2 C-D show the estimated additive and dominance effects for the 
comparable SBML approach. Here, sizes of the simulated genetic effects were unknown. 
Hence, in an additional analysis involving only the 23 simulated QTLs and genetic values of 
the simulated trait, we obtained estimates for the implicitly simulated genetic effects for the 
SBML approach.

To characterize possible deviations from the linearity in the SBML approach, we estimated 
the genetic effect sizes of all 23 simulated QTLs on the observed metabolic outcome of each 
single QTL-influenced enzymatic reaction. For an example dataset, which was also the basis 
for Figures 2 C-D, the impact of all QTLs on different metabolic outcomes is presented in 
Figure 3. Analysing all 100 datasets, two different kinds of genotype-phenotype mapping 
were observed on the level of metabolite concentrations: First, the QTL had no clear impact 
on its belonging metabolic outcome, whereas other QTL positions had. For example, QTL1 
had no specific impact on the corresponding metabolic outcome, whereas, e.g. QTL18 and 
QTL22 clearly had an impact on the metabolic outcome belonging to the enzymatic reaction 
parameterized by QTL1. Second, the QTL had a clear impact on its belonging metabolic 
outcome as also on other QTL positions. This is the case for e.g. QTL18 and QTL23. 

For all 100 training datasets, all scenarios, heritabilities and for the corresponding optimal 
γ-values, we investigated how good the linear model fitted the simulated data (results not 
shown). We observed, except of one case, that the linear model fitted all simulated datasets 
similarly and no significant difference for both simulation approaches was found.

All figures are based on an example dataset with 
nSNP=52 273, nQTL=23, H2=0.3 and the optimal 
γ-value. Estimated (A) additive and (B) dominance 
effects in the conventional approach. A filled 
circle was plotted for each genetic effect >10−4. 
In this approach, sizes of the simulated genetic 
effects were known and additionally plotted in 
red. In comparison, estimated (C) additive and 
(D) dominance effects in the SBML approach. 
Here, the implicitly simulated main genetic effect 
sizes were estimated using the 23 QTLs to predict 
the corresponding genetic values. The observed 
estimated genetic effect sizes were plotted in red.

Figure 2
Estimated main genetic effects for 
conventional (left) and SBML (right) approach
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Figures are based on the same example dataset as in Figure 2. All 23 QTL positions were used to estimate for each 
QTL the impact on each specific metabolic outcome. Each QTL is numbered and its specific metabolic outcome is 
presented. The Moreover, each specific metabolic outcome is split into the participating metabolites (M), where each 
metabolite is signed with the specific number as it is used in the SBML model (Holzhütter, 2004). The QTL positions 
which share the same metabolite for their belonging enzymes are marked in green and the corresponding QTL 
position is marked in red.

Figure 3
Estimated main genetic effect sizes for all QTLs for all metabolic outcomes
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Analysing experimental and simulated data

Two different approaches to simulate data were conceptually compared to experimental 
data by comparing the results of fastBayesB analyses. We observed that the optimal γ-value 
disagreed for the different investigated experimental datasets, e.g. pH value γ=0.001, fat (%) 
γ=10−4 and casein (%) γ=10−5. The estimated variance components and prediction precisions 
for the optimal γ-value can be found in Table 2. In general, for experimental investigated 
milk traits, H2 was underestimated by fastBayesB compared to estimated h2 obtained with a 
sire-model for all investigated milk traits, e.g. fat (%) estimated h2=0.23 with sire-model and 
H2=0.105 with fastBayesB. Further, observed prediction precisions were scaled to 100 % to 
ease conceptual comparison between datasets. Therefore, the observed prediction precisions 
were divided by the square root of the estimated or simulated heritability (represents a 
possible upper bound for the prediction precision).

In Figure 4, the estimated genetic effects are presented for the different milk traits 
observed, using the whole dataset. In this figure, it is shown that casein content revealed 
only one intermediate additive effect. In comparison, beside one major additive effect, fat 
content showed further two intermediate additive and one dominance effects. Analyses 
for pH value revealed equally large genetic effects for additive and dominance effects. For 
simulated datasets the observed main genetic effect sizes were close to the observed, using 
the corresponding whole training sets (Figure 2).

Estimated (A) additive and (B) dominance genetic effects for fat content, (C) additive and (D) dominance for 
casein content, (E) additive and (F) dominance for pH value. The figures based on the whole dataset and 
analysed with fastBayesB for the optimal γ-value.

Figure 4
Estimated main genetic effects for different milk traits
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Discussion
Methodological developments for algorithms in the field of genomic selection are typically 
based on simulated data. In our contribution, as an alternative to the state-of-art simplistic 
simulation approach, we investigated consequences of using a more complex, partly non-
additive genotype-phenotype map compared to a conventional genotype-phenotype map. 
Our comparisons revealed that the SBML approach produced lower prediction precisions and 
clearly less linear additivity compared to the conventional approach.

Comparison of conventional versus SBML approach

In the conventional approach, the contributions of additive and dominance effects were 
explicitly modelled and thus known. For the SBML approach instead, the influences of 
additive and non-additive effects and their specific impacts on the total genetic variance 
were unknown and genetic effects were estimated based on the simulated genetic values.

Our comparison of fastBayesB results showed that conventional and SBML approaches 
were not similar regarding prediction precision and mostly show clear differences in 
estimated variance components (Table 1). In general, however, the choice of heritability and 
simulated quantity of QTLs and/or SNPs had a similar influence on the prediction precision 
for both simulation approaches. The prediction precision decreased with increasing quantity 
of SNPs, because the larger SNP set only included additional non-informative SNPs without 
impact on the phenotypic variation. The estimated genetic effect of all these additional SNPs 
should be zero. The fastBayesB method estimated an effect size for each locus (iteratively) 
under the assumption of linkage equilibrium. Additionally, the LD (mean value of r2=0.15 
for neighbouring SNPs (Figure 1)) is weak between our simulated SNPs, such that we do not 
expect linkage influences on estimated genetic effects. Hence, estimation errors accumulated 
with increasing number of SNPs. The quantity of simulated QTLs has a major influence on the 
prediction precision, which is in agreement with the observation of Daetwyler et al. (2010) 
and Zhang et al. (2010). As the same amount of genetic variation in the simulation is now 
spread over more loci, most QTLs had small effect sizes. Smaller effects were more difficult to 
detect by fastBayesB. The details of results depend on the value of H2.

The SBML approach enabled further research opportunities regarding the inner structure 
of the (simulated) genotype-phenotype map compared to the conventional approach. It 
was found that some genetic effects were negligible if the sum was taken over all specific 
QTL outcomes (Figure 3). In our case, investigations of the specific QTL outcomes revealed 
two different mappings. The first type involved QTL variation showing no impact on the 
metabolic outcome belonging to the enzymatic reaction parameterized by this QTL, 
indicating that changes at the corresponding QTL position had no direct influence  on this 
metabolic outcome. For example, QTL1 position appears to have a negligible effect on the 
specific investigated metabolic outcome of all 23 investigated enzymatic reactions (Figure 3) 
consistently over all datasets. Genetic variation at QTL1, however, is not without importance 
for the main trait: If mutations or diseases would affect either the metabolome network 
model or the weights for the summation of single metabolites to yield the phenotype, 
variation at QTL1 would likely become measurable. The second type of observed mapping is 
the corresponding QTL position affecting its specific metabolic outcome as well as other QTL 
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positions. In this case, some of the QTL positions interacted. Comparing estimated genetic 
effects for an example dataset for the genetic value prediction based on the 23 QTLs in the 
SBML approach (Figure 2 CD) with those for the single metabolites (Figure 3), which are 
summed up to build these genetic values, it can be concluded that some genetic effect sizes, 
which exist on the metabolome level, are negligible on the level of the genetic value.

For conventional and SBML approach, the goodness of model fit was evaluated and it was 
observed that the used linear model explained both simulated datasets similar in almost all 
cases. Hence, the observation that the simulated data of the SBML approach can  be well 
analysed with a conventional linear model, including additive and dominance effects can 
be traced back to the arbitrary simple genotype-phenotype mapping from the metabolome 
level to genetic value in the SBML approach. We conclude that, for our chosen simulation 
approach, the SBML approach involves both a non-additive genotype-phenotype mapping 
as well as an additive part (metabolome to genetic value). In this context, we hypothesize 
that the genetic effects of the non-additive part lead to possible small deviations from a clear 
additive genotype-phenotype map for the phenotype. However, to decipher the details of 
these interwoven influences is certainly a rewarding field for a future study and beyond our 
current contribution.  

Analysing experimental and simulated data

Our approach to compare milk traits and different simulated datasets is not meant as direct 
comparison, as we do not fit any kind of simulation model parameters using our experimental 
data. The comparison is rather on a conceptual level via comparing the structure of fastBayesB 
results (Table 2), because of the unknown underlying number of QTLs for the experimental 
traits. The comparison of the composition of the genetic effect sizes for simulated and 
experimental data offers another perspective to compare experimental data and different 
alternatives of simulation. Different estimated genetic effect compositions were observed for 
simulated datasets (Figure 2) and also for milk traits (Figure 4), where casein (%) and fat (%) 
mainly depended on one major additive effect (which is known from the literature as DGAT1 
(Grisart et al. 2004)). Also, the used linear model seems to be sufficient for experimental data 
and simulated data (visual residual analysis).

In this context, the SBML approach offers further investigation opportunities, e.g. studying 
the genotype-metabolite map or metabolite-phenotype map. Compared to the conventional 
approach, these additional possibilities make simulation approaches alike the proposed 
SBML approach eligible for improving the genetic value prediction for experimental data 
also with respect to non-additive genetic effects which are sought to be exploited by modern 
methods in the field of genomic selection.

The more realistic simulation approach

Our set-up of the SNP datasets was based on annotated SNP positions and we used the actual 
lengths of the bovine chromosomes. This is different from most approaches recently chosen, 
where chromosomes have equal size and mostly 3 to 10 chromosomes were simulated (e.g. 
Meuwissen et al. 2001, Calus & Veerkamp 2007). Our set-up generated a distribution of LD 
values for adjacent SNPs similar to the experimental data (Figure 1).
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To simulate more realistic genetic values, several further opportunities exist. We decided 
to integrate the level of the metabolome between genotype and phenotype and kept the 
construction of the genetic value as simple as possible: each QTL influenced only one kinetic 
parameter per enzyme. Further, taking the sum of equilibrium enzyme products is a simple 
strategy to simulate genetic values of a «complex trait». The following alternative example 
approaches might be conceived: (1) Genetic variation at a specific QTL may influence more 
than one enzyme parameter at a time. This would allow for concrete pleiotropy. Also explicit 
epistasis could be a possible extension, as proposed by Long et al. (2010) or Ober et al. 
(2011), but these authors employed statistical epistasis. (2) Genetic values could be directly 
constructed from multiple metabolite concentrations in various other ways. (3) The most 
advanced possibility of simulating phenotypes would certainly be to implement a systems 
biology model including cell, organ and physiology levels, which could lead to more realistic, 
implicit genotype-phenotype mappings (e.g. Nomura 2010).

Sensitivity of fastBayesB

The parameter γ of the fastBayesB method often has a significant influence on the results of 
the analyses, especially on the prediction precision. Therefore, different γ-values were tested 
to study the influence of the fastBayesB method on performance with respect to different 
simulation approaches as well as experimental data. The optimal γ-value was determined by 
using the γ-value with the largest prediction precision covering a certain set of γ-values. For 
conventional and SBML approach, it can be summarized that the optimal γ-value with respect 
to cross-validation prediction accuracy was mostly lower than the simulated proportion of 
QTL to SNPs. The range of γ-values, which was appropriate for nSNP=5 227, was in the interval 
[10−4; 0.05] and for nSNP=52 273 the range was [10−5; 0.001]. In other cases, the fastBayesB 
algorithm did not converge or it aborted. If the algorithm did not converge, the optimum was 
not reached within the 1 000 iteration steps. There are several possible reasons for abortion, 
which were discussed in Wittenburg et al. (2011). 

In conclusion, the SBML approach was simulated using a more complex genotype-
phenotype map than the conventional approach including the metabolome level. A deeper 
investigation of the simulated genetic effect sizes for the SBML approach revealed that some 
genetic effect sizes were negligible after the additive second step of the simulated composite 
mapping. Also, some simulated QTLs do not seem to be important for the phenotype, 
because their genetic impact on the investigated metabolic outcome is very low. We could 
show that our proposed SBML approach offers various further investigation opportunities 
compared to the conventional approach.

Our conceptual comparison revealed that similarities can be found between simulated 
and experimental datasets regarding genetic architecture, with trait-specific details. For 
further investigations, we propose to simulate a genotype-phenotype map including the 
molecular level to explore the importance of the genetic variation on this intermediate level 
and its transformation through molecular networks.
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