
Archiv Tierzucht 56 (2013) 103, 1023-1027 1023

Short communication

A database for efficient storage and 
management of multi panel SNP data
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Abstract
The fast development of high throughput genotyping has opened up new possibilities in 
genetics while at the same time producing immense data handling issues. A system design 
and proof of concept implementation are presented which provides efficient data storage 
and manipulation of single nucleotide polymorphism (SNP) genotypes in a relational 
database. A new strategy using SNP and individual selection vectors allows us to view SNP 
data as matrices or sets. These genotype sets provide an easy way to handle original and 
derived data, the latter at basically no storage costs. Due to its vector based database storage, 
data imports and exports are much faster than those of other SNP databases. In the proof of 
concept implementation, the compressed storage scheme reduces disk space requirements 
by a factor of around 300. Furthermore, this design scales linearly with number of individuals 
and SNPs involved. The procedure supports panels of different sizes. This allows a straight 
forward management of different panel sizes in the same population as it occurs in animal 
breeding programs when higher density panels replace previous lower density versions.
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Introduction
High throughput single nucleotide polymorphism (SNP) genotyping is evolving at a 
staggering rate, developing into a powerful tool in genetic analyses in all areas of biology. 
Although its promises are immense, data processing issues are associated with it. Dropping 
genotyping costs and ever increasing marker densities result in a huge increase in data 
volume, which seems to develop faster than the already impressive rate at which data storage 
costs have come down in the past. Thus, increasing data storage requirements are an issue.

SNP data analysis workflows often result in filtering SNPs thereby creating genotype 
subsets for different purposes. This process can lead to a dramatic increase in disk space 
requirement: while each derived dataset will always be smaller than the original, their sizes 
will still be of the same magnitude, quickly using huge amounts of disk space.

High throughput genotyping is used across species with diverse sets of genotyping 
panels of different sizes ranging from a few thousand to millions. New panels of higher 
densities may be used to retype the same individuals as it is done in regular animal breeding 
programs, resulting in ever growing datasets. Accordingly, information originating from 
panels of different densities will have to be managed and processed.

Space requirements of SNP data may be very large, resulting in specialized hardware having 
to be made available for storage. Therefore, it makes sense to centralize data management 
in a relational database, which can be accessed by multiple users. A number of database 
developments try to address some of the abovementioned issues (Orro et al. 2008, Fong et 
al. 2010, Mitha et al. 2011).

However, the main shortcoming is the »one genotype per row« (OGPR) storage scheme 
which leads to huge storage requirements and slow export times. Rios et al. (2010) improved 
this scheme by storing one record per individual containing all genotypes together with each 
genotype’s position. Our proposal goes well beyond this through a more efficient storage 
scheme and the development of the genotype set concept, which substantially enhances 
data manipulation.

Efficient management of SNP data has to address long term data storage, multiple 
genotyping panels of different sizes as are already in practical use in animal breeding and 
elsewhere. Further, efficient selection of SNPs and fast exports to various formats for further 
processing are essential. This leads us to the following design.

The design
Compressed storage

Typical files from genotyping labs easily have sizes of hundreds of megabyte (MB) per 
individual. We propose to store the SNP genotypes of one individual in a compressed vector 
using the position as determined by the panel map, which leads to one genotype record per 
individual. When only the biallelic state of a SNP is of interest, two bit storage is sufficient, 
allowing 16 SNPs to be stored in one 32 bit integer word. Accordingly, all genotypes from a 
60 000 SNP panel can be stored in an integer vector of dimension 3 750 or 14.6 kb. Once a 
panel map is stored, any number of resulting genotypes can be loaded.
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Often the call rates i.e. the GCscore need to be stored for each SNP, typically a floating point 
number in the range of 1 to 100. Here, a flexible scheme is proposed, allowing the user to 
determine the number of bits to be used for the score: 4 bits accommodate a resolution of 
100/15. Using the same four bits on the range of 51 % to 100 % will double the resolution. As 
with the genotpyes, the GCscore is also designed as one vector per individual.

Set based manipulation

For easy data manipulation, we introduce the concept of effectively spaceless genotype sets. 
Each SNP panel comprises a specified set of SNPs. Using the SNP’s position in the panel as 
its position in the genotype bit vector enables access to each SNP without explicitly having 
to state the SNP name. Once genotypes are treated as vectors, a SNP dataset can be viewed 
as a matrix of genotypes with the SNPs constituting the columns while each genotyped 
individual leads to one row.

Often, only subsets of SNPs are used in analyses, perhaps only those from a particular 
chromosome, or SNPs with a minimum frequency. Using a bit vector snp_sel_vec of the 
dimension of the SNP panel provides a generalized approach: a .TRUE. or .FALSE. decides if a 
SNP is a member of a particular subset. A genotype set is then completely defined by adding 
a vector indiv_sel_vec which contains the individuals of the subset. Finally, a set name for the 
combination of a particular snp_sel_vec and indiv_sel_vec, uniquely specifies a genotype 
set. Thus, creating new derived genotype sets amounts to creating two new lists: one for 
the SNPs and the other for the individuals and giving a genotype set name for easy access. 
The storage implications are clear: instead of having to store a matrix of dimension nSNP * 
nIndividual only two vectors of dimension nSNP and nIndividual need to be stored for each 
derived matrix which is thus effectively spaceless.

It should be noted that the concept of genotype sets allows rapid implementation of general 
set operations like unions or intersections on the basis of any genotype set, original or derived.

Being a central repository for all data to be analysed, fast exports are critical. A data 
analysis step typically starts with an export using an appropriate format for downstream 
processing. Often exports are performed by costly SQL selects on the basis of SNP names 
(Orro et al. 2008, Fong et al. 2010, Mitha et al. 2011).

However, export speed is a function of both the data storage and the retrieval scheme. 
Storage overhead of our approach is minimal: the indiv_sel_vec is an integer vector with as 
many 32 bit words as there are individuals in the genotype sample, while snp_sel_vec has 
the dimension of the number of SNPs in the panel divided by 16 (for two bit storage). Thus, 
all genotypes from a one million panel will occupy 244 kb in snp_sel_vec. Clearly, on this data 
volume basis our design will have a performance advantage over the OGPR paradigm which 
needs to process one million records per individual.

For data retrieval, the genotype set approach replaces SQL based SNP selection by much 
faster vector operation. An export of a genotype set amounts to these actions: firstly, snp_
sel_vec and indiv_sel_vec are fetched for the chosen set. Secondly, for each individual the 
compressed genotype vector is retrieved by one SQL select and shrunk on the basis of the 
snp_sel_vec which can be implemented as fast shifts. Thus, the extraction speed is largely 
independent from the subset selection.
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Performance of proposed design
The proof of concept implementation was done in Perl and PostgreSQL as the backend 
database server. Apart from conceptual simplicity, performance in terms of storage efficiency 
and speed of data import and export is of critical importance. This was investigated by a 
number of genotype datasets of very different sizes (Table 1).

Table 1
Performance for five test datasets

data n SNPa n indb tot SNPc impd expe DB storf

set1 58 47 2.7 2.38 1.38 0.28
set2 36 403 14.7 4.37 1.02 0.27
set3 229 90 20.6 1.89 0.69 0.25
set4 4 098 270 1 106 1.60 0.53 0.25
set5 1 458 1 397 2 036 1.50 0.54 0.25
apanel size: number of SNPs×1 000,   bnumber of individuals,   ctotal number of SNPs in dataset×1000 000,   dtime to 
import 1 mio SNPs in s,   etime to export 1 mio SNPs in s,   fstorage in MByte per 1 mio SNPs 

The timings refer to the import of SNPs after the panel map has been loaded, as this is done 
only once. Further, two bit storage for the biallelic state genotypes (A, B, AB, and no call) with 
no GCscore is assumed. The benchmarks were executed on an iCore 5 laptop (2.7GHz / 4GB 
RAM).

Importing data following our design requires two steps. Firstly, the panel map is loaded 
which contains the panel size, the SNP names and chromosome location. A unique panel 
name is given, which needs to be specified whenever new genotype data are loaded in 
a second step. During the initial load, a snp_sel_vec is created with all bits set to 1. The 
individual IDs are stored in indiv_sel_vec as picked up from the data file. The combination 
of those two selection vectors then yields the first genotype set, uniquely identified by its 
symbolic name, which is the only information required for an export. Notice that our design 
scales very well (column 5 and 6 in Table 1), with import and export time per one million SNP 
even going down as panel sizes increase.

Popular SNP database management systems store OGPR (Orro et al. 2008, Fong et al. 
2010, Mitha et al. 2011) resulting in huge storage requirements: using the HumapHap300 for 
300 subjects, about 90 million of records will be generated (Mitha et al. 2011). In contrast, 
our design will create only 300 rows, which will clearly reduce both storage and processing 
requirements. Even the improved design presented by Rios et al. (2010) requires 5 gigabyte 
(GB) for 1.5 billion genotypes, while our design would require approximately 0.37 GB.

A direct comparison to other implementations for computing time is difficult. Based on 
the timings from our design (1.55 sec and .54/1 million genotypes, for import and exports 
as a weighted mean from Table 1), we expanded the software comparisons given in Table 1 
in Mitha et al. (2011) for a 317K panel with 100 samples. The timings in minutes are n/a, 18, 
4.2 and 0.82, for imports and 10, 93, 5, 0.29 for exports from SNPLims, GWASA, SNPpy single, 
and our implementation, respectively. Thus, our design seems to be an order of magnitude 
faster than the best of the contenders. This is not surprising, since the OGPR requires space 
for the sample ID, the SNP name and the chromosome location for each genotype. Using 
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the database design given in Mitha et al. (2011) for the 317K dataset, we have a storage 
requirement of 2 721 MB versus 8 MB. Thus, our compressed bit vector storage scheme is 
around 300 times more efficient than the OGPR scheme of other packages.

As an example, on a 500 GB disk two million individuals genotyped with a 317K panel can 
be stored using our scheme. In contrast, the same disk would store 0.146 million individuals 
with the design from Rios at al. (2010), and only 7 000 with the common OGPR storage 
scheme.

Supplementary material
The proof of concept code is available under the GPL license at ftp://ftp.tzv.fal.de/pub/snp/
SNP-PoC.tar.gz
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