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Abstract
This study was conducted to compare Type I error and test power of ANOVA, REML and ML 
methods by Monte Carlo simulation technique under different experimental conditions. 
Simulation results indicated that the variance ratios, sample size and number of groups were 
important factors in determining appropriate methods which were used to estimate variance 
components. The ML method was found slightly superior when compared to ANOVA and 
REML methods. On the other hand, ANOVA and REML methods generated similar results in 
general. As a results, regardless of distribution shapes and number of groups and if n<15; ML, 
REML methods might be preferred to the ANOVA. However, when either number of groups or 
sample size was increased (n≥15) ANOVA method may also be used along with ML and REML. 
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Introduction
Estimation of the amount of variation between treatments in total variation is an important 
issue for animal breeding as well as other fields of science (Falconer 1989). Variance 
components estimation methods such as Analysis of Variance (ANOVA), Maximum Likelihood 
(ML), Restricted Maximum Likelihood (REML), Bayesian, Henderson I, II, III are the ways 
to evaluate the amount of variation in response variable which is related to one or more 
random-effects factors (Saahai & Ojeda 2004, 2005). ANOVA method has been exploited by 
many years in estimating variance components (Searle et al. 1992, Yolcu et al. 2004). However, 
even if the assumptions of ANOVA (normality and homogeneity of variance) are satisfied, it 
tends to predict negative variance component when mean square treatment is smaller than 
mean square error (MSA<MSE) (Verdooren 1982, Smith & Sawage 1992, Kelly & Mathew 1993, 
1994, Rao 2001, Searle et al. 2006). Searle (1971) reported that when MSA<MSE, there is no 
mechanism used in ANOVA that prevents a negative estimate. It is possible, however, to avoid 
getting negative estimates by using some other methods such as ML, REML, and Bayesian 
method instead of ANOVA. Searle et al. (2006) reported that there is nothing in the ANOVA 
method that will prevent a negative estimate. Another alternative would be to use a method 
of estimation that explicitly excludes the possibility of negative estimates such as ML, REML 
and Bayesian method. 
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There are many studies about comparing variance component methods with respect to 
their performance on both a real data set and an artificial data set generated by simulation 
techniques (Swallow & Monaham 1984, Rao & Kleffe 1988, Westfall 1987, Chaloner 1987, 
Khattree & Gill 1988, Smith & Sawage 1992, Westfall & Bremer 1994, Kelly & Mathew 1994, 
Belzile & Angers 1995, Rao 2001, Shugart et al. 2002). However, these methods were compared 
to each other only based on one data set. It does not provide efficient comparison of the 
performances of these methods based on one data set. Comparison of the performance of 
these methods with respect to Type I error rate and test power under different experimental 
conditions made by Monte Carlo simulation studies, might provide more detailed information. 
The main purpose of this study was to compare ANOVA, ML and REML methods with respect 
to Type I error rates and test power under different experimental conditions using Monte 
Carlo simulation studies.

Material and methods
Monte Carlo simulation techniques were used to compare ANOVA, ML and REML methods 
with respect to Type I error rates and test power under different experimental conditions. 
Type I error rates and test power of these methods were assessed under different situations. 
The following variables were manipulated in this simulation study:

a) type of population
b) number of groups
c) sample sizes 
d) variance homogeneity and heterogeneity
e) effect sizes. 

For k=3 and k=5, random numbers from the N (0,1), χ2 (3), t (10) and β (5,2) distributions 
were generated by a Microsoft Fortran Developer Studio (Microsoft Corporation, Redmond, 
WA, USA) using generators from IMSL library (functions RNNOA, RNSTT, RNCHI and RNBET) 
(Anonymous 1994). The variance ratios were chosen as 1:1:1, 1:1:4, 1:1:9 and 1:1:25 for k=3 and 
1:1:1:1:1, 1:1:1:1:4, 1:1:1:1:9 and 1:1:1:1:25 for k=5. In order to form heterogeneity among the 
population variances, random numbers in the samples were multiplied by specific constant 
numbers (σ=1, 2, 3, 5). The populations were standardised because they have different means 
and variances. Shape of distributions was not changed while the means were changed to 
0 and the standard deviations were changed to 1. For k=3 and k=5, 30 000 data sets were 
generated from mentioned populations employing equal sample sizes of 5, 10, 15 and 20. 

For each experimental condition, the ANOVA, ML and REML methods were performed to 
estimate variance components (σ2

e and σ2
α), respectively. Then, the numbers of predicted σ2

α 

s whose values fall outside of the confidence interval was calculated as follows and counted 
afterwards. And then, dividing the value of σ2

α whose values fall outside of the confidence 
interval by the total number of 30 000 trials, type I error rates were found. Since there is a 
solution only for σ2

α>0 in terms of ML and REML methods, the negative predicted values of σ2
α 

s were assumed to be zero (Sahai & Ojeda 2005):

 P		  MSE 	 (	MSA −F(k−1, k(n−1); 1−
α
2 ) )< σ2

α< 	 MSE 	 ( MSA −F(k−1, k(n−1); 
α
2 ) )  = 1 − α	 (1)

	 nF(k−1, ∞; 1−
α
2 )		  MSE	 nF(k−1, ∞; 

α
2 ) 	 MSE
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In order to compare the methods with regard to test power, firstly, specific constant numbers 
with standard deviation form (effect sizes of 0.50, 0.75 and 1.25) were added to the random 
numbers of the last population. Thus, the predicted values of σ2

α s were provided to fall outside 
of the confidence interval in question. Then, the number of σ2

α s falling outside of the intervals 
which were originally falling outside was determined. Finally, having divided that number by 
30 000 which is the total number of trial, the power of the test was obtained. 

Statistical methods

If there are k treatment groups and each group has the same number of observations 
(balanced design), the general form of the random-effects one-way model can be written 
as below: 

yij =  μ + αi + eij ,       i = 1, 2, …, k   and  j = 1, 2, …, n	   (2)

where yij is the observed value of experimental unit j in group i, μ is the general population 
mean, αi is the effect of group i, eij is the random error terms with (0, σ2

e). 
The eij’s and αi’s are mutually exclusive and αi ~ N(0, σ2

α), eij ~ N (0, σ2
e) and Cov (αi , eij)=0 

(Rasch et al. 1999, Kaps & Lamberson 2004, Rasch & Masata 2006).
In random-effects model, the expected value and variance of yij is μ and σ2

α+σ2
e), respectively. 

Since αi and eij are mutually exclusive, therefore the distribution of yij is yij ≈ N (μ, σ2
α+σ2

e)
The two components σ2

α and σ2
e of yij are called variance components. Different methods 

such as ANOVA, ML, REML, Bayesian, Henderson I, II, III, and MINQUE etc. have been developed 
in order to estimate the components σ2

α and σ2
e. ANOVA, ML and REML methods were taken 

into consideration in this study.

ANOVA method

ANOVA method for estimating σ2
α and σ2

e includes equating mean square error (MSE) and  
mean square treatment (MSA) to their expected values and then solving the resulting 
equating for σ2

α and σ2
e. So, the estimators obtained are as follows:

E (MSE) = σ2
e and E (MSA) = σ2

e + nσ2
α then	 (3)

^σ2
e = MSE and 		  ^σ2

a                                   =
 (MSA − MSE)

		  n
(Thompson 1962, Kelly & Mathew 1993, Rao 2001, Sahai & Ojeda 2004, 2005, Searle et al. 
2006). 

Under normality assumption, the probability of negative estimate for ^σ2
α can be computed 

for various numbers of treatments (k) and sample sizes (n) as:

 	 σ2
e      	 (4)

	 σ2
e + nσ2

α

Maximum likelihood method (ML)

In order to avoid negative estimates, instead of ANOVA, one of the alternative methods which 
is used to estimate variance components, is maximum likelihood (ML). 
ML estimators of σ2

e and σ2
α are:

P ( ^σ2
α

 < 0) = P (MSA < MSE) = P (Fk-1, N-k <                    )
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where k is the number of group, n is the number of observation, SST is the total sum of 
squares, MSE is the mean square error and MSA is the mean square treatment. Since ML 
estimators must satisfy σ2

e and σ2
α ≥0, If MSA<MSE then ^σ2

α = 0 and ^σ2
e = SST (Hartley & Rao 1967, 

Harville 1977, Kaps & Lamberson 2004). 

REML method

In order to avoid negative estimates another alternative method is REML. Under the normality 
assumption, for balanced one-way random model the REML estimators of σ2

e and σ2
α are:  

^σ2
e  =  SSE  = MSE and  ^σ2

α  = (MSA−MSE) respectively. 				                (6)

These estimators are the REML estimates provided being nonnegative. Note that REML 
estimators are the same as the ANOVAs when studied with balanced design. 

Likewise ML estimators, REML estimators must also satisfy σ2
e and σ2

α ≥0, If MSA<MSE then   
^σ2

α  = 0 and  σ2
e  =  STT   (Patterson & Thompson 1974).

Results
Type I error rates: three groups

Empirical Type I error results of 30.000 simulation runs are given in Table 1-4. When k=3, 
the distribution was normal (0, 1) and variances were equal (1:1:1), REML and ML methods 
had similar and acceptable Type I error rates (around 5.0 %). Type I error rates for ANOVA 
method were between 2.29-4.62 % under the same conditions. The ANOVA appeared to be 
the most affected method by the sample size. Under small deviations from homogeneity of 
variances (1:1:4) the most reliable results were obtained from the ANOVA method. Increasing 
the degrees of the heterogeneity of the variances (1:1:9 and 1:1:25) caused the Type-I error 
rates in all methods that biased more than 5.0 %. 

Table 1
Empirical type I error rates (%) when distributions were N (0,1)

Sample 
size

Variance
ratio
tests

1:1:1
(1:1:1:1:1)

1:1:4
1:1:1:1:4

1:1:9
1:1:1:1:9

1:1:25
1:1:1:1:25

k=3 k=5 k=3 k=5 k=3 k=5 k=3 k=5

5

10

15

20

ANOVA
ML
REML
ANOVA
ML
REML
ANOVA
ML
REML
ANOVA
ML
REML

2.29
5.33
4.42
3.63
5.64
4.79
4.10
5.67
4.95
4.62
5.82
5.24

4.75
5.19
4.98
4.90
5.30
5.02
4.82
5.18
4.92
5.09
5.34
5.14

3.45
7.05
5.77
5.04
7.11
6.35
5.46
7.31
6.42
5.51
6.86
6.24

7.28
7.82
7.57
7.64
8.09
7.80
7.68
8.05
7.81
7.50
7.86
7.57

5.21
9.61
8.16
6.76
9.26
8.37
6.95
9.12
8.13
7.33
8.81
8.11

11.81
12.48
12.23
11.89
12.39
12.09
11.93
12.50
12.11
11.95
12.43
12.11

7.02
12.66
11.13
8.59
11.67
10.70
9.14

11.57
10.61
9.55

11.53
10.76

20.39
21.40
21.11
20.14
20.85
20.51
19.67
20.34
19.92
19.79
20.42
20.00

kn

nN−k

kn−1

^σ2
e
 =	 SST   = MSE and  ^σ2

α = (1− 
1
k (MSA−MSE)  respectively.	 (5)

	 N−k	 n
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When distributions were not normal but the variances were homogeneous, the Type 
I error rates for all methods were generally similar to the Type-I error rates realised under 
normal distribution. It may be suggested that as long as the variances are homogeneous 
the distribution shape does not affect Type-I error rates of all methods. However it is not 
possible to reach the same conclusions when the variances are not homogeneous. The Type 
I error rates for all methods were affected negatively when the distributions were not normal 
and variances were not homogeneous. Moreover, this negative effect was pronounced more 
when samples were taken from χ2 (3)-distribution. 

If we make a general evaluation for k=3, when the variances are equal, regardless of the 
shape of the distribution, as the number of observed values in groups increases, the Type-I 
error rates regarding all methods, have a tendency to tend to gather around 5.0 %.

Five groups

Type-I error rates concerning all methods were displayed to be affected from an increase 
the number of groups to be compared from 3 to 5. This effect appeared slightly positive 
when the variances were homogeneous. Because under this experimental conditions, Type-I 
error rates with regard to all methods were gathered generally around 5.0 %. In case of the 
variances becoming heterogeneous, however, the Type I error rates regarding all methods, 
have a tendency to deviate from 5.0 %. Especially, when the variance ratios were 1:1:25, the 
Type I error rates have raised even over 20.0 %. 

Under the same conditions, when the distributions were t (10) and β (5,2), the Type I error 
rates for all methods were generally around 5.0 % under homogeneity of variances. When the 
distributions were χ2 (3), it has been observed that Type I error rates were generally a bit less than 
5.0 %. However, in parallel to the increase in sample size it shows a trend approaching to 5.0 %. 

When the variances were heterogeneous, all methods tended to deviate from nominal 
alpha level (5.0 %). These deviations appeared to be more obvious especially in the skew 
distributions (χ2 and β). Therefore, all methods were adversely affected when both 
homogeneity of variance and normality assumptions were not satisfied. At the same time, 
increasing the number of groups to be compared, had seriously affected the type I error rates 
especially when the variances were heterogeneous. This effect was observed to be more 
obvious when the variance ratios were 1:1:25.

Test power

Empirical test power results of 30 000 simulation runs are given in Table 5-8. When samples 
were taken from normally distributed populations (Table 5), the ML method was slightly more 
powerful when compared to ANOVA and REML regardless of the number of groups, sample 
sizes, mean differences and variance ratios in general. When variances were homogeneous 
(1:1:1), the test power values for ANOVA, REML and ML methods were estimated between 
5.94-96.69 %, 6.84-96.69 % and 7.63-97.05 % for k=3. Under these conditions, the test power 
estimates for ANOVA and REML methods are almost the same. All methods were affected from 
heterogeneity of the variances negatively and this effect was more obvious especially when 
variance ratios were 1:1:9 and 1:1:25. When the variances were heterogeneous, increasing the 
number of groups from 3 to 5 has increased test power estimates of all methods regardless 
of distribution shapes (especially when distributions were Normal, t- and Beta) and sample 
sizes (especially when n≥15). 
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Table 2
Empirical type I error rates (%) when distributions were β (5,2)

Sample 
size

Variance
ratio
tests

1:1:1
(1:1:1:1:1)

1:1:4
1:1:1:1:4

1:1:9
1:1:1:1:9

1:1:25
1:1:1:1:25

k=3 k=5 k=3 k=5 k=3 k=5 k=3 k=5

5

10

15

20

ANOVA
ML
REML
ANOVA
ML
REML
ANOVA
ML
REML
ANOVA
ML
REML

2.37
4.93
454
3.70
5.40
4.85
4.01
5.48
4.81
4.31
5.55
4.95

4.54
4.92
4.77
4.81
5.17
4.91
4.91
5.26
5.01
5.02
5.29
5.08

4.04
6.99
6.51
5.19
7.05
6.39
5.51
7.11
6.44
5.75
7.03
6.35

7.30
7.78
7.56
7.91
8.32
8.07
7.53
7.95
7.65
7.54
7.88
7.62

6.09
9.75
9.13
7.14
9.48
8.68
7.29
9.21
8.47
7.38
8.76
8.16

12.80
13.57
13.28
12.20
12.79
12.48
12.30
12.79
12.52
11.97
12.40
12.08

8.49
13.56
12.92
9.46

12.47
11.81
9.93

12.33
11.49
10.17
11.99
11.29

22.02
23.07
22.80
20.87
21.58
21.21
20.22
20.85
20.50
20.04
20.55
20.26

Table 3
Empirical type I error rates (%) when distributions were t (10)

Sample 
size

Variance
ratio
tests

1:1:1
(1:1:1:1:1)

1:1:4
1:1:1:1:4

1:1:9
1:1:1:1:9

1:1:25
1:1:1:1:25

k=3 k=5 k=3 k=5 k=3 k=5 k=3 k=5

5

10

15

20

ANOVA
ML
REML
ANOVA
ML
REML
ANOVA
ML
REML
ANOVA
ML
REML

2.09
4.59
4.09
3.54
5.35
4.74
4.18
5.69
5.05
4.32
5.32
4.93

4.65
5.03
4.87
4.40
4.70
4.49
4.74
5.07
4.87
4.68
5.02
4.74

3.28
6.03
5.54
4.76
6.54
5.80
5.29
6.96
6.17
5.54
6.72
6.15

6.99
7.51
7.29
6.92
7.36
7.08
7.35
7.73
7.45
7.35
7.71
7.42

4.52
8.09
7.38
5.95
8.08
7.43
6.60
8.55
7.79
7.27
8.70
8.01

11.10
11.82
11.56
11.42
11.96
11.64
11.56
11.97
11.67
11.65
12.11
11.74

6.42
 11.17
 10.36
  8.43
 11.67
 10.81
 8.73
11.31
10.48
 8.73
10.60
 9.85

19.34
20.28
19.97
19.42
20.11
19.77
19.71
20.36
20.00
19.50
20.04
19.73

Table 4
Empirical type I error rates (%) when distributions were χ2 (3)

Sample 
size

Variance
ratio
tests

1:1:1
(1:1:1:1:1)

1:1:4
1:1:1:1:4

1:1:9
1:1:1:1:9

1:1:25
1:1:1:1:25

k=3 k=5 k=3 k=5 k=3 k=5 k=3 k=5

5

10

15

20

ANOVA
ML
REML
ANOVA
ML
REML
ANOVA
ML
REML
ANOVA
ML
REML

1.83
3.92
3.52
3.21
4.88
4.26
3.74
5.10
4.55
4.32
5.35
4.86

3.94
4.27
4.12
4.23
4.54
4.36
4.44
4.78
4.52
4.54
4.85
4.61

4.05
6.97
6.36
5.59
7.50
6.83
5.55
7.06
6.32
6.17
7.37
6.84

6.82
7.35
7.10
7.38
7.81
7.50
7.78
8.17
7.87
7.79
8.16
7.89

7.22
10.49
9.71
8.29

10.59
9.80
8.48

10.44
9.65
8.37
9.82
9.25

12.94
13.65
13.31
12.58
13.10
12.81
12.59
13.14
12.79
12.55
13.07
12.69

10.42
15.02
14.27
11.36
14.40
13.58
10.92
13.36
12.60
11.15
13.00
12.32

21.82
22.68
22.43
22.33
23.15
22.75
20.91
21.53
21.21
20.78
21.38
21.00
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Table 5
Empirical test powers (%) when distributions were N (0,1)

n=5:5:5 / 5:5:5:5:5

Variance ratio
Tests Effect size  1:1:1 

(1:1:1:1:1)
1:1:4

1:1:1:1:4
1:1:9

1:1:1:1:9
1:1:25

1:1:1:1:25
k=3 k=5 k=3 k=5 k=3 k=5 k=3   k=5

ANOVA

ML

REML

ANOVA

ML

REML

ANOVA

ML

REML

ANOVA

ML

REML

0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

5.94
10.04
28.34
7.63

11.72
30.87
6.84

10.58
28.43

6.37
9.97

27.06
7.16

11.02
29.18
6.55

10.04
27.08

6.55
8.66

16.73
8.42

10.66
18.88
7.78
9.79
17.39

8.97
11.78
20.51
9.82
12.74
21.83
9.20

12.01
20.61

7.60
9.17

13.70
9.96

11.53
15.99
9.34

10.81
14.93

13.06
14.61
19.85
14.01
15.65
21.10
13.44
14.98
20.20

9.26
10.36
12.07
12.56
13.34
15.17
11.89
12.63
14.32

20.79
20.87
22.80
22.05
22.22
24.17
21.42
21.58
23.48

n=10:10:10 / 10:10:10:10:10
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

11.61
24.18
67.40
13.01
26.27
69.64
11.91
24.29
67.41

10.57
22.19
66.82
11.47
23.66
68.52
10.64
22.20
66.82

9.70
15.36
35.40
11.00
16.84
37.21
10.29
15.79
35.55

11.57
18.29
40.23
12.35
19.23
41.69
11.70
18.37
40.25

9.74
12.77
22.15
11.32
14.13
23.81
10.67
14.00
22.62

11.50
17.96
29.60
15.33
18.81
30.69
14.73
18.14
29.67

10.31
11.54
15.35
12.09
13.42
17.18
11.60
12.72
16.43

21.21
22.03
25.66
22.03
22.91
26.62
21.58
22.40
25.97

n=15:15:15 / 15:15:15:15:15
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

17.76
40.37
88.69
19.27
42.52
89.74
17.92
40.39
88.69

15.69
37.64
88.88
16.80
39.35
89.66
15.70
37.65
88.88

12.24
21.65
51.61
13.54
23.22
53.39
12.64
21.89
51.65

14.76
25.36
57.64
15.52
26.45
58.82
14.87
25.41
57.64

10.89
15.83
31.69
12.10
17.04
33.40
11.46
16.19
31.89

15.98
21.56
39.35
16.70
22.34
40.55
16.12
21.67
39.41

11.04
12.75
18.70
12.57
14.27
20.17
12.04
13.64
19.34

21.33
22.71
28.99
22.09
23.46
29.84
21.66
22.92
29.17

n=20:20:20 / 20:20:20:20:20
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

23.75
54.72
96.69
25.33
56.67
97.05
23.83
54.74
96.69

21.13
52.39
97.05
22.55
54.15
97.33
21.15
52.39
97.05

14.71
28.15
66.14
15.96
29.69
67.64
14.93
28.28
66.14

17.76
32.48
71.20
18.51
33.54
72.20
17.80
32.50
71.19

12.32
19.09
40.68
13.38
20.48
42.25
12.71
19.47
40.79

17.60
24.81
48.45
18.22
25.64
49.50
17.68
24.92
48.47

11.68
13.74
22.33
12.85
15.05
23.58
12.31
14.36
22.74

21.26
23.88
32.97
21.91
24.60
33.87
21.51
24.07
33.09

The test power estimates for ANOVA and REML were almost the same in general regardless 
of experimental conditions. Deviations from homogeneity of variances had a significant 
effect on the test power estimates. When the deviations from homogeneity of variances 
were obviously large (1:1:25), the maximum test power estimates for ANOVA, ML, and REML 
were observed as 22.33 %, 23.58 % and 22.74 % for k=3 and 32.97 %, 33.87 % and 33.09 % for 
k=5, respectively. Under the homogeneity of variances, when n≥15 and Δ=1.25, each method 
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has reached the power level of 80.0 % which was accepted as an adequate test power value 
regardless of distributions. However, none of the methods could reach 80 % test power values 
even if n=20 and Δ=1.25 under heterogeneity of variances. For example, when distributions 
were normal and variance ratios were 1:1:4, n=20 and Δ=1.25; the estimated test power values 
for ANOVA, ML and REML were between 14.71-66.14 %, 15.96-67.64 % and 14.93-66.14 % for 
k=3 and 17.76-71.20 %, 18.51-72.20 % and 17.80-71.19 % for k=5 respectively. 

Table 6
Empirical test powers (%) when distributions were t (10)

n=5:5:5 / 5:5:5:5:5

Variance ratio
Tests Effect size  1:1:1 

(1:1:1:1:1)
1:1:4

1:1:1:1:4
1:1:9

1:1:1:1:9
1:1:25

1:1:1:1:25
k=3 k=5 k=3 k=5 k=3 k=5 k=3  k=5

ANOVA

ML

REML

ANOVA

ML

REML

ANOVA

ML

REML

ANOVA

ML

REML

0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

5.76
8.49

21.86
6.47
9.45

23.73
5.93
8.61

21.88

5.86
7.91

14.68
7.66
9.87

16.83
7.08
9.07

15.47

8.36
10.75
18.37
9.18

11.76
19.66
8.62

10.98
18.52

7.17
8.36
11.98
9.42

10.73
14.29
8.82

10.00
13.33

12.14
13.89
17.78
13.07
14.99
18.89
12.51
14.30
18.03

9.00
9.62
12.11
12.10
12.68
14.32
11.44
12.01
13.34

18.96
19.66
21.35
20.17
20.94
22.59
19.61
20.31
21.97

n=10:10:10 / 10:10:10:10:10
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

9.86
20.04
56.65
11.26
21.82
58.97
10.26
20.22
56.66

9.11
17.88
55.52
9.87

19.23
57.37
9.16

17.91
55.51

8.73
13.47
29.89
10.03
15.00
31.73
9.28

13.96
30.13

10.82
15.77
34.59
11.57
16.70
35.94
10.95
15.86
34.63

9.04
11.32
20.16
10.56
12.76
21.77
9.99

12.04
20.61

13.73
16.79
26.55
14.51
17.60
27.61
13.98
16.95
26.70

10.12
11.39
14.15
11.92
13.14
16.17
11.39
12.56
15.32

20.37
21.55
24.67
21.34
22.42
25.57
20.74
21.89
24.96

n=15:15:15 / 15:15:15:15:15
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

14.30
32.89
79.62
15.63
34.90
81.14
14.49
32.92
79.92

12.33
29.62
79.17
13.31
31.24
80.45
12.35
29.63
79.16

11.05
18.56
44.21
12.21
19.94
46.04
11.47
18.82
44.28

13.24
21.54
49.20
13.89
22.54
50.47
13.32
21.58
49.20

9.69
14.29
27.60
10.80
15.45
29.09
10.22
14.78
27.82

15.14
19.59
34.61
15.80
20.38
35.56
15.30
19.72
34.68

10.66
11.81
17.12
11.95
13.30
18.62
11.48
12.64
17.81

20.60
22.01
27.43
21.29
22.76
28.30
20.83
22.22
27.62

n=20:20:20 / 20:20:20:20:20
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

19.36
44.61
91.37
20.92
46.57
92.09
19.44
44.64
91.37

17.08
41.86
91.92
18.21
43.56
92.50
17.09
41.87
91.93

12.80
23.90
56.25
13.93
25.36
57.96
13.09
24.07
56.28

15.83
27.43
61.52
16.52
28.46
62.66
15.89
27.46
61.53

11.91
16.88
34.35
12.92
18.11
35.73
12.33
17.22
34.48

16.19
22.81
42.03
16.86
23.59
43.06
16.31
22.92
42.07

11.33
13.25
19.85
12.47
14.51
21.31
11.98
13.87
20.24

20.94
23.09
30.40
21.62
23.80
31.27
21.12
23.31
30.59
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When the variance ratios increased to 1:1:9 and 1:1:25, the test power estimates for ML 
method were slightly higher than those of the ANOVA and REML. Under these conditions, 
the maximum test power values were estimated as 42.25 % and 23.58 % for k=3, and 49.50 % 
and 33.87 % for k=5, respectively. The similar results were obtained for other distributions (χ2, 
t and β). ML method was also slightly powerful when compared to ANOVA and REML when 
the samples were taken from the χ2, t and β distributions. 

Table 7
Empirical test powers (%) when distributions were β (5,2)

n=5:5:5 / 5:5:5:5:5

Variance ratio
Tests Effect size 1:1:1 

(1:1:1:1:1)
1:1:4

1:1:1:1:4
1:1:9

1:1:1:1:9
1:1:25

1:1:1:1:25
k=3 k=5 k=3 k=5 k=3 k=5 k=3  k=5

ANOVA

ML

REML

ANOVA

ML

REML

ANOVA

ML

REML

ANOVA

ML

REML

0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

5.83
9.94

27.40
7.05

11.03
28.67
6.67

10.42
27.47

6.31
9.68

26.52
6.95

10.68
28.64
6.37
9.77

26.53

5.53
6.87

12.67
7.03
8.22

13.85
6.76
7.90

13.25

7.92
9.36

16.90
8.59

10.24
18.17
8.10
9.57
17.00

7.06
7.40
9.62
8.95
9.10

11.02
8.70
8.82

10.67

11.44
12.12
15.01
12.42
13.12
16.04
11.85
12.51
15.24

9.34
9.38
9.55

12.25
12.20
11.88
12.00
11.94
11.55

20.24
19.78
19.34
21.46
20.97
20.55
20.94
20.47
19.93

n=10:10:10 / 10:10:10:10:10
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

11.35
24.34
67.61
12.47
25.77
69.26
11.69
24.46
67.61

10.19
21.74
66.83
11.04
23.23
68.64
10.22
21.75
66.83

7.89
12.56
32.40
8.89

13.68
33.71
8.41

12.91
32.46

10.43
15.40
37.82
11.20
16.37
39.27
10.56
15.48
37.83

8.11
9.64
18.12
9.28

10.92
19.45
8.86

10.35
18.47

12.39
14.87
25.25
13.12
15.64
26.20
12.57
15.01
25.32

9.24
9.98
12.10
10.88
11.60
13.54
10.48
11.18
13.03

19.45
19.71
21.84
20.37
20.60
22.72
19.84
20.05
22.10

n=15:15:15 / 15:15:15:15:15
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

17.06
39.38
89.03
18.37
41.05
89.94
17.22
39.40
89.03

15.42
37.18
89.42
16.47
38.98
90.23
15.45
37.19
89.42

10.30
19.12
51.27
11.36
20.27
52.87
10.72
19.24
51.29

12.82
22.65
56.99
13.55
23.74
58.47
12.87
22.69
56.99

9.18
12.86
28.12
10.30
14.00
29.41
9.80

13.28
28.29

13.75
17.98
35.70
14.40
18.75
36.91
13.86
18.07
35.74

10.14
10.74
15.17
11.35
11.94
16.45
11.00
11.45
15.73

19.59
20.51
25.00
20.27
21.17
25.74
19.86
20.75
25.16

n=20:20:20 / 20:20:20:20:20
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

23.66
54.55
96.77
25.09
56.43
97.10
23.72
54.56
96.77

20.66
52.24
97.32
21.96
53.92
97.61
20.67
52.24
97.32

12.84
25.81
66.88
13.85
27.16
68.34
13.05
25.92
66.89

15.76
30.38
72.12
16.49
31.43
73.17
15.81
30.39
72.13

10.35
15.89
38.04
11.37
16.97
39.46
10.77
16.18
38.12

15.46
21.92
46.38
16.10
22.67
47.49
15.57
21.97
46.41

10.34
12.08
18.38
11.45
13.17
19.70
11.02
12.68
18.79

19.86
21.89
28.52
20.52
22.58
29.35
20.06
22.01
28.64
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The test power values for ANOVA and REML were also found to be quite similar under these 
conditions. On the other hand, in parallel to increase in sample size the test power estimates 
for all methods were close to each other. 

The test power estimates for all methods under β (5,2) distributions were similar to those 
of the estimates under normal distributions especially when the variances were homogenous 
(1:1:1) or the deviations from homogeneity of variances were small (1:1:4). 

Table 8
Empirical test powers (%) when distributions were χ2 (3)

n=5:5:5 / 5:5:5:5:5

Variance ratio
Tests Effect size 1:1:1 

(1:1:1:1:1)
1:1:4

1:1:1:1:4
1:1:9

1:1:1:1:9
1:1:25

1:1:1:1:25
k=3 k=5 k=3 k=5 k=3 k=5 k=3  k=5

ANOVA

ML

REML

ANOVA

ML

REML

ANOVA

ML

REML

ANOVA

ML

REML

0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

6.25
11.94
33.94
7.30

12.99
35.13
7.00

12.35
34.00

5.96
10.14
30.82
6.66
11.28
33.08
6.05
10.19
30.83

3.87
5.30
11.25
4.97
6.35

12.28
4.82
6.12

11.66

6.07
6.92

14.62
6.78
7.59

15.89
6.30
7.04

14.70

5.82
5.29
6.85
7.60
6.82
8.09
7.37
6.56
7.72

9.32
8.95

10.83
10.15
9.71
11.76
9.66
9.22
11.02

10.08
9.26
7.91

12.55
11.58
9.78

12.25
11.31
9.48

18.67
17.00
14.72
19.88
18.14
15.77
19.29
17.56
15.21

n=10:10:10 / 10:10:10:10:10
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

12.47
27.19
69.81
13.60
28.62
71.18
12.76
27.25
69.81

10.74
24.01
68.30
11.66
25.57
69.91
10.79
24.03
68.30

6.30
10.14
32.40
7.19

11.21
34.07
6.76

10.48
32.49

8.14
13.35
37.53
8.78

14.25
39.14
8.23

13.40
37.53

6.63
7.44

14.58
7.78
8.51

15.67
7.37
8.01

14.77

9.61
10.98
21.46
10.35
11.63
22.61
9.80
11.06
21.50

9.50
8.67
9.20

11.06
10.15
10.59
10.69
9.78

10.05

17.69
16.76
17.12
18.46
17.56
18.06
18.00
17.10
17.39

n=15:15:15 / 15:15:15:15:15
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

18.74
42.85
88.40
20.06
44.72
89.27
18.87
42.87
88.40

15.52
39.21
89.11
16.54
40.93
90.00
15.54
39.21
89.11

8.17
16.80
53.07
9.09

18.07
54.89
8.49

16.95
53.10

10.82
20.70
59.09
11.46
21.77
60.57
10.86
20.73
59.09

7.19
10.09
25.61
8.13

11.21
27.10
7.67

10.46
25.73

11.32
14.53
34.03
11.91
15.35
35.21
11.41
14.59
34.06

9.44
8.89
11.58
10.60
10.03
12.80
10.25
9.63

12.05

17.43
17.05
20.81
18.11
17.86
21.64
17.66
17.30
20.92

n=20:20:20 / 20:20:20:20:20
0.50
0.75
1.25
0.50
0.75
1.25
0.50
0.75
1.25

24.99
56.46
96.09
26.59
58.12
96.44
25.07
56.46
96.09

21.54
53.41
97.01
22.87
55.11
97.30
21.54
53.42
97.02

10.80
24.56
69.91
11.66
26.02
71.56
11.07
24.64
69.92

13.80
28.58
75.02
14.54
29.84
76.10
13.83
28.60
75.01

8.10
12.77
36.51
8.91

13.86
38.25
8.47

13.04
36.59

12.55
18.48
46.32
13.12
19.47
47.46
12.63
18.53
46.32

9.14
9.58

14.72
10.19
10.55
15.85
9.82

10.00
15.01

17.79
18.03
24.80
18.44
18.75
25.77
18.00
18.18
24.90
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Therefore, when the variances were homogeneous or small deviations occurred from the 
homogeneity, having normal distributions or β(5,2) did not affect the performances of these 
methods.

However, the effect of the distribution shape on test power became more apparent as the 
variance ratios were increased. Under these experimental conditions, the ML method was 
found to be slightly superior when compared to the ANOVA and REML when distributions 
were normal (0, 1) and t (10). On the other hand, in parallel to the increase in sample sizes, the 
test powers get close to each other. 

When the samples were taken from χ2 distributions and variances were heterogeneous, 
the test power estimates for all methods were smaller than those of the normal (0,1), t (10) 
and β(5,2). Especially the test power estimates were affected from high heterogeneity in 
the variances (1:1:25). For example, the test power estimates for ANOVA, ML and REML were 
14.72 %, 15.85 % and 15.01 % for k=3 even if n=20 and Δ=1.25. Under the same conditions, 
the test power estimates for β(5,2) were 19.85 %, 21.31 %, 20.24 %, the test power estimates 
for t(10) 19.85 %, 21.31 %, 20.24 % and for normal (0,1) populations were 22.33 %, 23.58 % 
and 22.74 %, respectively. Under the same conditions when k=5, the test power estimates 
for these methods were 24.80 %, 25.77 % and 24.90 % for χ2(3), 28.52 %, 29.35 % and 28.64 % 
for B(5,2), 30.40 %, 31.27 %, 30.59 % for t(10) and 32.97 %, 33.87 % and 33.09 % for normal (0,1) 
populations respectively.

Discussion
The estimation of variance components methods are commonly used in population genetics 
and applied in animal breeding to estimate the amount of variation between treatments 
in total variation and to estimate some breeding values (Rash & Masata 2006). For this 
purpose different methods were developed. In this study the ANOVA, ML and REML methods 
commonly used in practice, were compared to each other according to their performances 
(Type I error rate and test power) under 384 different experimental conditions. Results of this 
study showed that the ML method showed a slightly higher performance when compared 
to REML and ANOVA in general. On the other hand, ANOVA and REML estimates were found 
similar when variances were homogeneous. However, in parallel to the increase in the sample 
size (especially n≥15), both the Type-I error rates and the power values of the test of all the 
methods have gradually approached to each other. Searle (1971) and Searle et al. (2006) 
reported that the REML estimates were usually less biased when compared to ML estimates. 
For this reason, the REML estimates were generally preferred to ML and ANOVA in practice. 
Yang & Su (2005) reported that the performances of the ML, REML and ANOVA estimators 
became very similar when sample sizes were large enough. On the other hand, they could 
all perform poorly when there was an unbalanced design with large variances. Results of this 
study also showed that all methods were affected adversely from heterogeneity of variances. 
But, the existence of lower level (1:1:4 and 1:1:1:1:4) deviations from the homogeneity of 
variances did not affect the Type I error and test power estimates. When a general evaluation 
was made, it is possible to assert that regardless of the shape of the distribution, if the 
variances were homogeneous, ML and REML methods were superior to ANOVA. Under 
the same conditions, on the other hand, if the variances were not homogenous, the Type 
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I error rate and test power of the ANOVA, ML, and REML were at very low levels. Therefore, 
ANOVA, ML, and REML estimates would be biased under these conditions. Sample size and 
number of groups are also important factors in determining appropriate methods which 
were used to estimate variance components. Past studies indicated that the probability 
of negative variance component estimate decreases as either k or n increases (Searle et 
al. 2006). Regardless of distribution shapes and number of groups, if n<15 ML and REML 
methods might be preferred to the ANOVA. However, when either the number of groups or 
sample size was increased (n≥15), the ANOVA method may be used along with ML and REML. 
Because as the sample sizes were increased, the numbers of negative component estimates 
were decreased.
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