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Abstract
The effectiveness of proposed Gibbs sampling (GS) algorithm to detect single loci 
determining livestock threshold traits under a different hypothetical breeding and statistical 
modeling scenarios was examined. The following factors were included into the analysis: the 
presence of fixed effects, knowledge of one threshold, the size of the population (1 212 and 
3 070 pedigreed individuals, respectively) and proportions of individuals in three genotypic 
classes. Five threshold and one linear unitrait animal model were employed to analysis 
of these datasets. The GS algorithm was applied to estimate fixed effects (optionally), 
additive polygenic variance, single allele frequencies, genotypic effects and one threshold 
(optionally). For each case, 2 000 000 rounds of GS were conducted. The first 1 000 000 steps 
were discarded as a burn-in-period. The results were collected from every 20th iteration. 
In general, the accuracy of parameter estimates is not satisfactory. However, taking into 
account the scant amount of information provided by the ordinal categorical data, it seems 
that such an analysis is a good first approach. Except for one case in which the estimate was 
very close to the true value, in all the other cases the estimated gene effect was smaller than 
the true effect. In general, the algorithm proposed does not provide overestimated effects 
of single locus. 
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Zusammenfassung
Bayessche Analyse ordinal skalierter kategorischer 
Daten im gemischten Vererbungsmodell

Es wurde die Effektivität eines Gibbs sampling (GS) Algorithmus zur Detektion von Genen 
mit Einfluss of Schwellenmerkmale untersucht. In der Analyse werden folgende Faktoren 
berϋcksichtigt: fixe Effekte, Schwellenwerte, Populationsgröße und Genotypen. Es wurden 
fünf verschiedene Schwellenmodelle und ein lineares Modell analysiert. Mit Hilfe des GS 
Algorithmus wurden die festen Effekte, die additive polygenetische Variation, die Frequenzen 
von Allelen des Hauptgens, die Effekte des Hauptgens und die Schwellen geschätzt. Die 
Analyse wurde anhand von  2 000 000 Durchgängen vorgenommen. Im Ergebnis wurde 
jede 20. Iteration berϋcksichtigt. Dabei wurde festgestellt, dass die Schätzungsgenauigkeit 
unbefriedigend ist. Wenn man aber die begrenzte Menge an Informationen bei ordinalen 
skalierten kategorischen Variablen betrachtet, scheint die vorgeschlagene Analyse ein guter 
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Ausgangspunkt fϋr weitere Analysen zu sein. Das wesentliche Merkmal der vorgeschlagenen 
Methode ist, dass der geschätzte Effekt immer kleiner oder höchstens gleich dem wirklichen 
Effekt ist, d.h. der Algorithmus überschätzt den Effekt des Hauptgens nicht.

Schlűsselwörter:	 kategorische Daten, Effekte des Hauptgens, Gibbs sampling, 		
		  Schwellenwertmodell

Introduction
In the past decades of the 20th century, applied genetic improvement programs in livestock 
have been targeted at increasing production traits. So far, a considerably phenotypic and 
genetic gain has been registered. Unfortunately, the production characters are negatively 
correlated with functional ones, for instance fertility, fecundity, some disease resistances 
etc. A majority of them is categorical and often binary recorded. In fact, they are difficult 
to analyze statistically, since two scales (unobserved continuous liability and observed 
discrete phenotypes) should be statistically modeled. For simplicity classical linear models 
have been sometimes employed for genetic evaluation in livestock (Szwaczkowski et al. 
2002). Furthermore, low heritabilities estimated for functional traits have greatly limited its 
inclusion in selection programs. Hence, new statistical tools are still developed for analysis 
of categorical data (Gianola 1982, Molinski et al. 2003). Comparative studies (Casselas 2007, 
Silvestre 2007) indicate threshold methodology with Gibbs sampling algorithm to analyze 
these traits. 

A number of authors suggested that utilization of marker-assisted selection (Meuwissen 
& Van Arendonk 1992, Liu & Mathur 2005) and marker-assisted introgression (Dominik 
et al. 2007), especially for traits with low heritability, can considerably increase selection 
efficiency and maximize genetic progress. Unfortunately, molecular detection of important 
loci is still relatively expensive and labor-consuming. Furthermore, the methods used for 
estimating effects of quantitative trait loci, based on molecular data, often overestimate 
and or misestimate these effects (Hocking 2005). Similar conclusions were drawn at the 
13th Quantitative Trait Locus and Marker Assisted Selection Workshop in 20-21 April, 2009 in 
Wageningen (Mucha, personal communication) where additionally the usefulness of Bayesian 
methods was stated. Hence, it seems that advanced molecular works should be preceded 
by marker-free segregation analysis. A first approach to segregation analysis is described by 
Elston & Steward (1971). Next, these methods were extended among others by Janss et al. 
(1995) and Guo & Thompson (1994). However, the majority of these approaches are mainly 
focused on continuous traits. Recently, the Bayesian marker-free segregation analysis has 
been more widely employed to threshold traits (Kadarmideen & Janss, 2005; Skotarczak et al. 
2008, Sørensen et al. 1995). From the perspective of further molecular and marker segregation 
analysis, these algorithms can supply a number of useful information on genotype effects, 
single gene variance, allele frequency and polygenic variance. Furthermore, for the genetic 
analyses of the threshold characters the fixation and/or estimation (optionally, in case of 
more than two phenotypic classes) of the thresholds is required. Additionally, sensitivity of 
statistical inferences about segregation of single genes is influenced by the size and structure 
of population. It can also be determined by real genotypic effects and their frequencies as 
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well as numerical properties of applied algorithms. This paper is a continuation of an earlier 
study by Molinski et al. (2003) and Skotarczak et al. (2007, 2008) concerning Bayesian detection 
of single loci under threshold animal model. No literature on statistical effectiveness of 
proposed tools is available. 

The main objective of this paper is to check the effectiveness of the described algorithm 
in detecting single loci determining livestock threshold traits.

Material and methods
Data simulation

Simulation studies enabled us to examine the influences of several factors, such as: the 
presence of fixed effects, a knowledge of one threshold, the size of the dataset and the 
proportion of individuals in the three classes of the analyzed variable. More details are listed 
in Table 1.

Table 1
Analyzed models 

Model 	 Description

1.1.	 Three categories for data, fixed effects excluded, fixed threshold i.e. t1=0
1.2.	 Three categories for data, fixed effects excluded, both thresholds unknown
2.1.	 Three categories for data, fixed effects included, fixed threshold i.e. t1=0
2.2.	 Three categories for data, fixed effects included, both thresholds unknown
3.	 Two categories for data, fixed effects included, fixed threshold i.e. t=0
4.	 Continuous variable

To verify the correctness of the described algorithm some simulation studies have been 
provided. To be as close to reality as possible, the calculations were done for two different real 
pedigrees. The first one (P1), contained 1 212 individuals with 307 founders and 905 observed 
items. The average number of observation per individual was 3. The second pedigree (P2), 
consisted of 3 070 individuals with 454 founders and 2 040 observed animals. The mean 
replication number was about 5.5. To simulate the data we took two sets of parameters σ2

a, 
ƒA2 and µA1A1, namely S1={0.4, 0.2, 0.8} and S2={0.8, 0.2, 1.5}. In the case of both simulated 
data sets the polygenic heritability coefficient equals 0.3. The assumption concerning the 
allele frequency and the structure of the relationship matrices gave in P1 757 individuals 
with genotype A1A1, 338 of type A1A2 and 117 of type A2A2. For the P2 these numbers were 
respectively equal to 2 138, 771 and 161.

In each analyzed case, 2 000 000 rounds of Gibbs sampling were conducted. The first 
1 000 000 steps were discarded as a burn-in period. The important results were collected 
from every 20th iteration. The means of the posterior distributions were calculated as the 
point estimators of the unknown parameters. The statistical significance of the single gene 
effect was verified by the 95 % Highest Posterior Density Regions - HPDR (Scott 1992). If the 
HPDR included the 0 value it was stated that the single gene effect has no statistical meaning 
as opposed to the case when HPDR did not include 0. 
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Model and estimation of parameters

In the following analyses we assume that the ordinal categorical data y are described by a 
model

u = Xβ + ZWµ + Za +e	 (1)

where u is the s vector of unobserved variables (i.e. liability), s is the number of recorded 
individuals, X is the s × b design matrix relating fixed nongenetic effects to observations, β 
is the b vector of fixed nongenetic effects, Z is the s × q design matrix relating polygenic 
and single locus effects to observations, q is the number of all individuals and W is the q × 3 
unknown matrix containing information on the genotype of each individual; each row of W 
has one of the following forms: [1, 0, 0], [0, 1, 0] or [0, 0, 1] corresponding to genotypes A1A1, 
A1A2 or A2A2 respectively, μ is the vector [μA1A1, 0, −μA1A1]’, where μA1A1 is the effect of genotype 
A1A1, and −μA1A1 is the effect of A2A2, a is the q vector of random additive polygenic effects and 
e is the s vector of random effects.

The relation between observed phenotypes yi and the liability ui is conditioned by the 
thresholds t1 and t2, namely 

	 1      iƒ      ui ≤ t1
yi = 

parameters. The statistical significance of the single gene effect was verified 
by the 95% Highest Posterior Density Regions  - HPDR (SCOTT, 1992). If the 
HPDR included the 0 value it was stated that the single gene effect has no 
statistical meaning as opposed to the case when HPDR did not include 0.  
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For the realization of Gibbs sampling procedure it is necessary to define the 
prior distributions for all model parameters. Uniform improper distributions 
were assumed for  vectors β and , the random vectors a and e were normally 
distributed: a ~ N(0, A 2

aσ ), where A is the q x q relationship matrix, e ~ N(0, sI ) 

and an inverted chi-square distribution was assumed for the component 2

aσ . 
Moreover, the uniform distribution on the interval  ],0[ maxt  was supposed for the 
unknown thresholds and the interval [0, 1] for allele frequency.  
The conditional posterior distributions for vectors β, , a  in the presented 
models are normal with means equal to the solutions of the appropriate mixed 
model equations  (SØRENSEN and GIANOLA, 2002). 
The following formulas were used to calculate the expected values and 
variances at every step of Gibbs sampling procedure:  
for the vector of fixed effects β:  
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	2      iƒ      t1 < u1 ≤ t2      i = 1, ..., s	 (2)
	 3      iƒ      ui > t2

For the realization of Gibbs sampling procedure it is necessary to define the prior distributions 
for all model parameters. Uniform improper distributions were assumed for vectors β and μ, 
the random vectors a and e were normally distributed: a ~ N(0, Aσ2

a), where A is the q × q 
relationship matrix, e ~ N(0, Is) and an inverted chi-square distribution was assumed for the 
component σ2

a. Moreover, the uniform distribution on the interval [0, tmax] was supposed for 
the unknown thresholds and the interval [0, 1] for allele frequency. 

The conditional posterior distributions for vectors β, μ, a in the presented models 
are normal with means equal to the solutions of the appropriate mixed model equations 
(Sørensen & Gianola 2002).

The following formulas were used to calculate the expected values and variances at every 
step of Gibbs sampling procedure: 
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where i)(zw  is the i-th column of matrix ZW, 3,2,1=i . In every step of Gibbs 
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The values of the liability were generated from a truncated normal distribution 
with the truncation point defined by the actual threshold value:  
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where R

ix  is the i-th row of matrix  X, R
i)(zw  is the  i-th row of matrix ZW, R

iz  is 
the i-th row of matrix Z, i = 1,…, s, G is the table of genotypes determining 
structure of W.  
Moreover, (.)φ  and (.)Φ  denote the density and the cumulative distribution 
function of the normal distribution, respectively.  
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where )2|min( =yu  denotes the minimum value of the liabilities within 
observations in the second category; similarly )1|max( =yu  is the maximum 
value of the liabilities for observations in the first category.  Threshold 2t   was 
generated similarly.  
The additive variance component was generated from the following inverted 
chi-square distributions:  
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where 2, aa Sv  are the hyperparameters ( av  denotes the degrees of freedom and 
2
aS  is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
genotypes in table G were generated from the following formula:  
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where 2 ,a aS v are the hyperparameters (a v denotes the degrees of freedom and 
2
a S is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
genotypes in table G were generated from the following formula:  
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where zi is the i-th column of Z, Ai,i is the element of A−1 in the i-th row and i-th column, Ai,−i 

is the i-th row of matrix A−1 without the i-th element, a−i is vector a without the i-th element, 
i=1, ..., q. 
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Further, the elements of vector μ were generated according to the following formula:

μA1A1 ~ N 
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where 2 ,a aS v are the hyperparameters (a v denotes the degrees of freedom and 
2
a S is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
genotypes in table G were generated from the following formula:  
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where min (u | y=2) denotes the minimum value of the liabilities within observations in the 
second category; similarly max (u | y=1) is the maximum value of the liabilities for observations 
in the first category. Threshold t2 was generated similarly. 
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where i)(zw  is the i-th column of matrix ZW, 3,2,1=i . In every step of Gibbs 
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11AAµ > 0. As it was mentioned above we 
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The values of the liability were generated from a truncated normal distribution 
with the truncation point defined by the actual threshold value:  
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where R

ix  is the i-th row of matrix  X, R
i)(zw  is the  i-th row of matrix ZW, R

iz  is 
the i-th row of matrix Z, i = 1,…, s, G is the table of genotypes determining 
structure of W.  
Moreover, (.)φ  and (.)Φ  denote the density and the cumulative distribution 
function of the normal distribution, respectively.  
Threshold 1t  was generated from the following uniform distribution: 
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where )2|min( =yu  denotes the minimum value of the liabilities within 
observations in the second category; similarly )1|max( =yu  is the maximum 
value of the liabilities for observations in the first category.  Threshold 2t   was 
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where 2, aa Sv  are the hyperparameters ( av  denotes the degrees of freedom and 
2
aS  is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
genotypes in table G were generated from the following formula:  
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observations in the second category; similarly )1 | max(= y u is the maximum 
value of the liabilities for observations in the first category.  Threshold 2t  was 
generated similarly.  
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where 2 ,a aS v are the hyperparameters (a v denotes the degrees of freedom and 
2
a S is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
genotypes in table G were generated from the following formula:  
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where )2|min( =yu  denotes the minimum value of the liabilities within 
observations in the second category; similarly )1|max( =yu  is the maximum 
value of the liabilities for observations in the first category.  Threshold 2t   was 
generated similarly.  
The additive variance component was generated from the following inverted 
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where 2, aa Sv  are the hyperparameters ( av  denotes the degrees of freedom and 
2
aS  is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
genotypes in table G were generated from the following formula:  
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sampling procedure it was fixed that 
1 1A A µ> 0. As it was mentioned above we 
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The values of the liability were generated from a truncated normal distribution 
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i x is the i-th row of matrix  X, R
i ) (zw is the  i-th row of matrix ZW, R

i z is 
the i-th row of matrix Z, i = 1,…, s, G is the table of genotypes determining 
structure of W.  
Moreover, (.) φ and (.) Φ denote the density and the cumulative distribution 
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where ) 2 | min(= y u denotes the minimum value of the liabilities within 
observations in the second category; similarly )1 | max(= y u is the maximum 
value of the liabilities for observations in the first category.  Threshold 2t  was 
generated similarly.  
The additive variance component was generated from the following inverted 
chi-square distributions:  
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where 2 ,a aS v are the hyperparameters (a v denotes the degrees of freedom and 
2
a S is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
genotypes in table G were generated from the following formula:  
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where iG  is the genotype of the i-th individual, i−G  is the table of the 
genotypes of all individuals excluding the i-th individual, 

ioG  refers to the 

genotype of the progeny of the i-th individual,  miG  is the genotype of the i-th 

individual’s mate, 
ii ds GG ,  are the genotypes of the i-th  individual’s parents, i = 

1,…,q. When the individual is not observed, the last term will be substituted by 
1. In the first step of Gibbs sampling, it was assumed that matrix W has the 
following form: ]::[ 010W = . Further, for the single gene Mendelian 
transmission probabilities were assumed. 
To estimate the genotypes for the individuals, the frequency of alleles among 
the groups of founders is required. The  allele frequency was generated from 
the beta distribution according to the following formula (KADARMIDEEN and 
JANSS, 2005): 
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Results 
The results of simulation analysis are listed in Table 2 and visualized by 
Figures 1 -4.  Let us recall that by the simulation studies  we wanted to check 
the influence of several factors on the precision of the obtained estimators. We 
have taken into account the following elements: the presence of fixed effects, 
knowledge of one threshold, the size of the dataset and the proportion of 
individuals in the three classes of the analyzed variable. 
The first step in the verification procedure was to detect the influence of the 
fixed effects. Two analyses (1.1 and 1.2) in which the fixed effects were 
omitted  gave the estimates of the most interesting parameters ( 2

aσ , 
11AAµ ) 

close to the real values proving the correctness  of the method and the 
procedure (Fig. 1 – 2). The only one wrongly estimated parameter was the 
major gene effect in the case of both unknown thresholds in P1. Looking at 
these results, the positive influence of the bigger  dataset is  perceptible.  
Because in the real data the fixed effects are usually present, in the 
subsequent analysis we have introduced three fixed effects. The estimates of 
β were usually wrong, but what is  very interesting and important, in all the 
analyzed cases, the contrasts between them were  correctly estimated. 
For the other parameters, a positive influence of an assumption about the zero 
value of the first  threshold, the second being unknown, is observable. Also a 
positive influence of the magnitude of pedigree and consequently the number 
of observations is true. 
The analysis of  estimates of

2Af indicates model 2.1 as a best solution and 

again the estimate for P2 being better than that for P1.  

 ∏ 
oi

  P (Goi
 | Gi ,

 
Gmi

) 






− − −
−












∝ σ∏ −

2
G G G P G G G P G p

2
i

i d i s i

i o
i m i i o i

2
a i

)) (' (
exp ) , | ( ) , | ( ) , , , , , | (

Za ZW Xβ u z
G u a  β

 
where i G is the genotype of the i-th individual, i − G is the table of the 
genotypes of all individuals excluding the i-th individual, 
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transmission probabilities were assumed. 
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the groups of founders is required. The  allele frequency was generated from 
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ix  is the i-th row of matrix  X, R
i)(zw  is the  i-th row of matrix ZW, R
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the i-th row of matrix Z, i = 1,…, s, G is the table of genotypes determining 
structure of W.  
Moreover, (.)φ  and (.)Φ  denote the density and the cumulative distribution 
function of the normal distribution, respectively.  
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where )2|min( =yu  denotes the minimum value of the liabilities within 
observations in the second category; similarly )1|max( =yu  is the maximum 
value of the liabilities for observations in the first category.  Threshold 2t   was 
generated similarly.  
The additive variance component was generated from the following inverted 
chi-square distributions:  
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where 2, aa Sv  are the hyperparameters ( av  denotes the degrees of freedom and 
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aS  is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
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where R

i x is the i-th row of matrix  X, R
i ) (zw is the  i-th row of matrix ZW, R

i z is 
the i-th row of matrix Z, i = 1,…, s, G is the table of genotypes determining 
structure of W.  
Moreover, (.) φ and (.) Φ denote the density and the cumulative distribution 
function of the normal distribution, respectively.  
Threshold 1t was generated from the following uniform distribution: 
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where ) 2 | min(= y u denotes the minimum value of the liabilities within 
observations in the second category; similarly )1 | max(= y u is the maximum 
value of the liabilities for observations in the first category.  Threshold 2t  was 
generated similarly.  
The additive variance component was generated from the following inverted 
chi-square distributions:  
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where 2 ,a aS v are the hyperparameters (a v denotes the degrees of freedom and 
2
a S is a scale parameter). 

According to Guo and Thompson (1994), the elements of the unknown 
genotypes in table G were generated from the following formula:  

 

	
(9)

where Gi is the genotype of the i-th individual, G−i is the table of the genotypes of all 
individuals excluding the i-th individual, Goi

 refers to the genotype of the progeny of the 
i-th individual, Gmi is the genotype of the i-th individual’s mate, Gsi , Gdi are the genotypes of 
the i-th individual’s parents, i=1, ..., q. When the individual is not observed, the last term 
will be substituted by 1. In the first step of Gibbs sampling, it was assumed that matrix W 
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has the following form: W=[0 : 1 : 0]. Further, for the single gene Mendelian transmission 
probabilities were assumed.

To estimate the genotypes for the individuals, the frequency of alleles among the groups 
of founders is required. The allele frequency was generated from the beta distribution 
according to the following formula (Kadarmideen & Janss 2005):

ƒ (ƒA1 | β, µ, a, u, σ2
a, G) ∝ ƒnA1 (1 − ƒA1)nA2	 (10)

where nA1 and nA2 denote the number of alleles A1 and A2 in the group of founders. 

Results
The results of simulation analysis are listed in Table 2 and visualized by Figures 1-4. Let us 
recall that by the simulation studies we wanted to check the influence of several factors on 
the precision of the obtained estimators. We have taken into account the following elements: 
the presence of fixed effects, knowledge of one threshold, the size of the dataset and the 
proportion of individuals in the three classes of the analyzed variable.

Table 2
Results of simulation studies – true and estimated parameters

Model	 Pedigree and data proportion	 ƒA2
	 ƒ̂A2

	 t1	 t̂1	 t2	 t̂
2

1.1	 P1: 960, 834, 948	 0.2	 0.194	 0.0	 -	 1.0	 0.999
1.2	 P1: 960, 834, 948	 0.2	 0.668	 0.0	 −0.550	 1.0	 0.452
1.1	 P2: 4 687, 3 439, 3 205	 0.2	 0.230	 0.0	 -	 1.0	 1.010
1.2	 P2: 4 687, 3 439, 3 205	 0.2	 0.605	 0.0	 −0.567	 1.0	 0.446
2.1	 P1: 2 339, 302, 101	 0.2	 0.776	 2.5	 -	 3.5	 1.007
2.1	 P1: 1 990, 435, 317	 0.2	 0.456	 2.5	 -	 3.5	 0.993
2.1	 P2: 10 646, 541, 144	 0.2	 0.498	 2.5	 -	 3.5	 0.915
2.1	 P2: 9 668, 1 157, 506	 0.2	 0.261	 2.5	 -	 3.5	 1.053
2.2	 P1: 2 339, 302, 101	 0.2	 0.416	 2.5	 2.912	 3.5	 3.918
2.2	 P1: 1 990, 435, 317	 0.2	 0.400	 2.5	 0.826	 3.5	 1.817
2.2	 P2: 10 646, 541, 144	 0.2	 0.598	 2.5	 1.135	 3.5	 2.048
2.2	 P2: 9 668, 1 157, 506	 0.2	 0.352	 2.5	 −0.434	 3.5	 0.619
3	 P1: 2 339, 302, 101	 0.2	 0.162	 -	 -	 -	 -
3	 P1: 1 990, 435, 317	 0.2	 0.489	 -	 -	 -	 -
3	 P2: 10 646, 541, 144	 0.2	 0.528	 -	 -	 -	 -
3	 P2: 9 668, 1 157, 506	 0.2	 0.425	 -	 -	 -	 -
4	 P1: 2 339, 302, 101	 0.2	 0.275	 -	 -	 -	 -
4	 P1: 1 990, 435, 317	 0.2	 0.359	 -	 -	 -	 -
4	 P2: 10 646, 541, 144	 0.2	 0.054	 -	 -	 -	 -
4	 P2: 9 668, 1 157, 506	 0.2	 0.834	 -	 -	 -	 -

ƒA2
:  frequency of allele,  A, t1 and t2:  thresholds

The first step in the verification procedure was to detect the influence of the fixed effects. 
Two analyses (1.1 and 1.2) in which the fixed effects were omitted gave the estimates of the 
most interesting parameters (σ2

a , μA1A1) close to the real values proving the correctness of the 
method and the procedure (Figure 1-2). The only one wrongly estimated parameter was the 
major gene effect in the case of both unknown thresholds in P1. Looking at these results, the 
positive influence of the bigger dataset is perceptible. 

A1
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Figure 1
Comparison of major gene effect estimates when the true value is equal to 0.8

Figure 2
Comparison of major gene effect estimates when the true value is equal to 1.5

Because in the real data the fixed effects are usually present, in the subsequent analysis 
we have introduced three fixed effects. The estimates of β were usually wrong, but what is 
very interesting and important, in all the analyzed cases, the contrasts between them were 
correctly estimated.
For the other parameters, a positive influence of an assumption about the zero value of the 
first threshold, the second being unknown, is observable. Also a positive influence of the 
magnitude of pedigree and consequently the number of observations is true.
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Figure 3
Comparison of genetic additive polygenic variance estimates when the true value is equal to 0.4

Figure 4
Comparison of genetic additive polygenic variance estimates when the true value is equal to 0.8

The analysis of estimates of ƒA2 indicates model 2.1 as a best solution and again the estimate 
for P2 being better than that for P1. 

A subsequent problem is the division of observations into the three groups. A positive 
influence of a certain balance is seen only for the bigger set of data (P2), in which the major 
gene effect occurs to be significant.

When the number of observations in the three observed classes is very unbalanced, the 
question arises whether it is better to reduce the number of classes. Some comparisons of 
the results obtained for data grouped into two categories show that it is better not to join the 
classes and proceed with original data. 

As usual in the case of discontinuous variables it may also be interesting to check whether 
it is not better to adopt one of the well known transformations leading to continuity and 
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analyze the data as observations of a continuous variable. When the proportion as the 
transformation is used the obtained results indicate that such procedure deteriorates the 
estimates.

Discussion	
A detection of single loci with very large effects, determining continuous traits, with 
balanced size of genotypic classes segregating in a big population is very easy. Some major 
genes (e.g. Booroola gene - FecB) were identified many years ago by the use of relatively 
simple methods. They are effectively implemented into genetic improvement programs in 
livestock and poultry. König et al. (2009) concluded that economic efficiency and increased 
annual genetic gain in dairy cattle breeding programs are possible due to the replacement 
of classical procedure based on progeny testing by genome wide selection. It is almost sure 
that similar tendencies will be registered for other livestock populations.

Although a number of molecular and mathematical methods have been further developed, 
the detection of important single loci still seems difficult for at least three reasons. Firstly, 
when a trait of economic interest has a major gene segregating in a given population, the 
gene can easily be captured by selection. Secondly, the number of important traits (e.g. 
reproductive ability, disease resistance) has typical discrete vs binary phenotypes. Thirdly, 
some of the major genes are segregating in small unique populations. 

As it has already been mentioned, many single loci have been detected for animal 
reproductive ability. These genes determining a given trait often have different chromosomal 
localizations as well as various effects. For instance, eleven different genes are known 
for fecundity in sheep (Davis 2005). Also single loci have been detected for other binary 
characters (e.g. disease resistance). However, some of them still have the status of putative 
quantitative trait loci (Casas & Stone 2005). Physical identification of a single locus with 
considerable effects requires more efforts and relatively high costs, because genotyping of 
many individuals is still expensive. Hence, the implementation of molecular information in 
breeding programs can be effectively preceded by results of the marker-free segregation 
analysis, mainly hypothetical genotypic effects, allele frequencies as well as quantitative 
genetic parameters. This corresponds with the results obtained in the present study, in 
which the proposed Bayesian algorithm does not lead to overestimation of parameters, 
mainly genotypic effects. Therefore, our results can be used as initiative data prior to classical 
marker segregation analysis. 

Indeed, the proposed method assumed only a biallelic locus without dominance, although 
these assumptions are quite realistic (Kadarmideen & Janss 2005). Inheritance models 
for some traits are more complicated, as they include dominance, epistasis or genomic 
imprinting. Molecular identification of important single loci, especially determined discrete 
traits, seems to be more difficult (Blasco 2008).

Twenty different scenarios described by six models for two types of populations have been 
analyzed. To our knowledge, no reports on simulation studies on properties of the Bayesian 
algorithm to detect single loci by the use of non-marker data under a threshold animal model 
are available in literature. However, several papers concern the numerical comparison of non-
Bayesian methods for both polygenic and mixed inheritance models and influence of data 
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structure on the accuracy of the estimated genetic parameters under a polygenic inheritance 
model (Le Roy & Elsen 1995, Kominakis 2008). It is well known that statistical inference based 
on larger samples leads to more accurate estimation. Such dependence has been confirmed 
in the present study. Estimates obtained for P2 data are usually more accurate compared to 
P1 data. Generally, the problem of data structure is connected with field collected data. It 
varies across populations, species etc. Our investigations are addressed for small livestock 
populations.

From the previous remarks it is obvious that the proposed analysis should be treated as a 
first step analysis. The accuracy of estimates is not satisfactory. However, taking into account 
the scant amount of information provided by the categorical data, it seems that such an 
analysis is a good first approach in the estimation procedure.

A very important result is connected with the estimate of the major gene effect. Except 
for one case in which the estimate was very close to the true value, in all the other cases the 
estimated gene effect was less than the true effect. Consequently, it seems to us, that an 
estimated gene effect, proved to be significant by, for example, the Highest Posterior Density 
Regions is indicative of the presence of a segregating gene which conditions the analyzed 
trait.
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