
69

Comparison of active transcription regions of lampbrush 
chromosomes with the mitotic chromosome G pattern 
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Abstract
The most complete information on the karyotype is acquired through the observation 
of chromosomes obtained from dividing cells. A high number of chromosomes and the 
presence of microchromosomes in the bird karyotype have made cytogeneticists look for 
other sources of information on chromosomes. Information sources of great value for the 
bird karyotype analysis are meiotic chromosomes, specifically represented by lampbrush 
chromosomes. Lampbrush chromosomes (LBCs) found in developing oocytes of birds are 
perceived as a new model in cytogenetics which is especially important in the analysis of 
bird chromosomes. A typical LBC analysis enables one to assess transcription activity on the 
basis of LBC morphology (inactive chromomeres and side loops). A comparison of lampbrush 
chromosome transcription activity and the GTG pattern of the corresponding mitotic 
chromosomes have proven that active transcription regions with side loops correspond to 
G-positive bands on mitotic chromosomes.
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Zusammenfassung
Vergleich zwischen den transkriptionell aktiven Regionen der 
Lampenbürstenchromosomen und dem G-Muster der mitotischen 
Chromosomen der Europäischen Hausgans Anser anser

Die vollständigsten Informationen über den Karyotyp erhält man durch die Beobachtung 
von Chromosomen sich teilendender Zellen. Die große Anzahl von Chromosomen und 
das Vorhandensein von Mikrochromosomen im Vogelkaryotyp haben Zytogenetiker zum 
Suchen von anderen Informationsquellen über Chromosomen veranlasst. Eine wertvolle 
Informationsquelle für die Erforschung des Vogelkaryotyps sind meiotische Chromosomen 
– insbesondere die Lampenbürstenchromosomen, die in sich entwickelnden Oozyten der 
Vögel zu finden sind. 
Sie werden als ein neues Modell in der Zytogenetik wahrgenommen, das eine wesentliche Rolle 
bei der Chromosomenanalyse der Vögel spielt. Die Analyse der Lampenbürstenchromosomen 
ermöglicht eine Beurteilung der transkriptionellen Aktivität auf Grund der Morphologie 
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dieser Chromosomen (inaktive Chromomeren und seitliche Schleifen). Der Vergleich 
zwischen der transkriptionellen Aktivität von Lampenbürstenchromosomen und dem GTG-
Muster der entsprechenden mitotischen Chromosomen bestätigte, dass transkriptionell 
aktive Regionen mit seitlichen Schleifen den positiven G-Streifen auf den mitotischen 
Chromosomen entsprechen.

Schlüsselwörter: Hausgans Anser anser, mitotische Chromosomen, Transkription,   
  G-Streifen

Introduction
Karyotypes of most modern birds include 5 or 6 pairs of macrochromosomes and between 
32 and 36 pairs of microchromosomes (Christidis 1990, Mizuno & Macgregor 1998). The 
length of metaphase microchromosomes does not exceed 2 micrometres and the standard 
staining techniques do not enable the identification of bird microchromosomes even in 
relation to the centromere position (Bitgood & Shoffner 1990). The only standardized bird 
chromosome description is the karyotype of Gallus domesticus that comprises the first eight 
pairs of autosomes and the ZW chromosomes. It serves as a benchmark for the research on 
other bird species (Ladjali-Mohammedi et al. 1999, Schmid et al. 2000, 2005, Guttenbach et 
al. 2003). 

The few analyses of chromosomes of the genus Anser primarily concerned the determination 
of chromosome diploid number and morphology, and only sporadically the structure. The 
karyotype standard for Anseriformes is still unavailable. Morphological chromosome structure, 
with particular emphasis on the differences in the fourth chromosome pair set-up in various 
goose species, was analysed by: Bhatnagar (1968), Itoh et al. (1969), Shoffner et al. (1979), 
Silversides et al. (1988), Hidas (1993), Rabsztyn et al. (1998) and Jaszczak et al. (1999, 2002). 
Chromatin structure was investigated by Mayr et al. (1990) and Apitz et al. (1995). The only 
detailed reports on replication patterns of goose chromosomes are the papers by Andraszek 
& Smalec (2007) on particular G band identification in the first eight macrochromosomes and 
the sex chromosomes of the goose (Anser anser) and by Wójcik & Smalec (2007, 2008) on the 
RGB pattern profile of goose (Anser anser and Anser cygnoides) chromosomes.

In the case of bird karyotypes, meiotic chromosomes, specifically represented by 
lampbrush chromosomes, are an invaluable source of information. Lampbrush chromosomes 
are greatly elongated diplotene bivalents found in the growing oocytes of all animals except 
mammals, some insects and some reptiles. The lampbrush form of even the smallest of the 
chromosomes is easily visible and shows useful linear differentiation. In Gallus domesticus 
they can be as much as 30 times larger than their mitotic equivalents (Kropotova & 
Gaginskaya 1984, Macgregor & Varley 1988, Galkina et al. 2006, Gaginskaya et al. 2009). The 
axis of every LBC consists of two sister chromatids. The chromatin in homologous parts of a 
bivalent is condensed (chromomeres) or it can be decondensed forming side loops, two for 
each chromosome and four at the bivalent level. A set of LBCs in an oocyte may include a few 
thousand loops according to the species or even the individual. Each loop corresponds to the 
specific DNA sequence which, at the tetrad level, has three copies (Vlad & Macgregor 1975, 
Macgregor 1987, Morgan 2002, 2007, Austin et al. 2009).
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Lampbrush chromosomes constitute a model in research on transcription regulation 
because the LBC transcription activity can be seen under the light microscope and observed 
as changes in their morphology (Morgan 2002). Transcription activity analysis is based on the 
assumption that transcription takes place in LBC side loops. Decreased transcription activity is 
reflected in side loops becoming smaller and smaller (Gall 1983, Callan et al. 1987, Gaginskaya 
& Tsvetkov 1988, Morgan 2002, 2007, Galkina et al. 2006, Gaginskaya et al. 2009). In turn, a 
routine mitotic chromosome analysis makes it possible to describe only the chromosome 
morphology. Transcription activity can be assessed only by molecular methods which are 
designed to detect the amount of transcription products.

As a tool, lampbrush chromosomes were introduced into poultry cytogenetics by Kropotova 
& Gaginskaya (1984), and by Hutchison (1987). The former authors support a thesis that 
chromosomes provide valuable information on bird gene expression and are irreplaceable 
in cytogenetic research on animals with small genomes in which a large number of small-
sized mitotic chromosomes makes it impossible for scientists to carry out microchromosome 
analysis. As in the case of banded patterns of mitotic chromosomes, LBCs are characterised by 
a special arrangement of active and inactive chromomeres visible as a pattern of side loops 
and regions without loops. In the second report on chicken genes and chromosomes, LBCs 
were recognized as a new model in avian cytogenetics (Schmid et al. 2005).

Lampbrush chromosomes found in various species are characterised by a very similar 
structure and perform the same function. Structural similarity of LBCs is especially distinct in 
birds (Saifitdinova 2003, Krasikova et al. 2004, Galkina et al. 2006). Bird LBCs are characterised 
by a similar location of chiasmas and marker loops, and they differ only in size, which is due 
to a different size of genomes of particular species (Angelier et al. 1984, 1990, Morgan 2002, 
2007, Rodionov & Chechik 2002). As in the case of mitotic chromosomes, also lampbrush 
chromosomes of Gallus domesticus are readily examined and constitute a reference point in 
studies on LBCs in other bird species (Schmid et al. 2005).

Macgregor (1984) and Hutchison (1987) were the first to profile lampbrush chromosome 
structure. They were also the first to confirm the fact of loop transcription. Rodionov et 
al. (1989) analysed lampbrush chromosomes of Gallus domesticus and Coturnix japonica, 
using fluorochrome staining. In their research they identified three types of marker loops 
and performed a comparative analysis of the mitotic and lampbrush chromosome patterns 
obtained by chromomycin A3/distamycin (CMA/DA) staining. A detailed analysis of the 
first five lampbrush bivalents and sex bivalent was performed by Chelysheva et al. (1990). 
Rodionov (1996), Rodionov et al (2002a, 2002b) and Rodionov & Chechik (2002) analysed 
the lay-out and number of chiasms in lampbrush chromosomes of Gallus domesticus and 
investigated marker loops in Gallus gallus, Coturnix japonica, Columba palumbus and 
Fringilla coelebs. Solovei et al. (1992, 1993, 1994, 1996) described the positions of the loops, 
chromomeres and transcription units at the ends of LBCs in four bird species. They concluded 
that the configuration is different than that of amphibians. Solovei et al. (1995) found that in 
Gallus domesticus oocytes, the K/J proteins or their analogues, those known to participate 
in mRNA formation in man, are closely connected with the C-rich RNA transcripts that form 
on lampbrush chromosome loops. A profile of the first five macrobivalents and sex bivalent 
of Gallus domesticus and Coturnix japonica was published in the Second Report on Chicken 
Genes and Chromosomes (Schmid et al. 2005)
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The purpose of the paper was to compare transcription-active regions of lampbrush 
chromosomes with the GTG pattern of corresponding mitotic chromosomes of the European 
domestic goose Anser anser.

Material and methods
The research was carried out on the lampbrush chromosomes and mitotic chromosomes of 
the European domestic goose Anser anser.

Isolation of lampbrush chromosomes

Chromosomes in the form of lampbrushes were prepared by manual isolation from oocytes 
with diameters of 1.5-3.5 mm obtained from sexually mature goose using the standard 
procedure (Macgregor & Varley 1988) modified for bird oocytes (Solovei et al. 1992, Rodionov 
& Chechik 2002). The preparations were stained with Coomassie Blue R250. The first five 
macrobivalents and lampbrush sex bivalents (sex LBCs) were identified on the basis of their 
length and marker structure, using the cytological map of Gallus domesticus LBCs described 
by Chelysheva et al. (1990), Rodionov et al. (2002a) and Schmid et al. (2005).

Izolation of mitotic chromosomes

The mitotic chromosomes were isolated from peripheral blood lymphocytes applying 
standard procedures. The pattern of G bands was determined by means of a relevant 
technique (Seabright 1971) modified for Anser anser by Apitz et al. (1995). The pattern of 
G bands was determined on the basis of an analysis of 688 chromosomes obtained from 
132 metaphase plates. The description of chromosome morphology and classification was 
performed following Fechheimer (1990). The p arms of the chromosomes of pair 1 and 2 
and the q arms of the chromosomes of pair 1, 2, 3, and 4 as well as sex chromosome Z were 
divided into regions according to the standard of G band identification on the chromosomes 
of Gallus domesticus (Ladjali-Mohammedi et al. 1999)

The preparations obtained were analysed under the Olympus BX 50 light microscope. A 
detailed computer analysis was carried out using the Multiscan image analysing system, the 
Karyotype software, and graphic software compatible with the system.

 
Comparison of transcription activity on the LBCs and the GTG pattern

The first five lampbrush macrobivalents and lampbrush sex bivalents were subjected to 
comparative analysis. For each bivalent a graphic arrangement of loop regions and active 
transcription regions, and those without loops which are transcription-inactive, was prepared. 
The term »band« was applied to the mitotic chromosomes only, whereas in the case of the 
lampbrush chromosomes the regions of transcription-active chromatin were called »blocks«. 
In the Results section, the blocks of transcription-active chromatin were marked with 
consecutive capital letters of the alphabet according to the standard (Schmid et al. 2005). 

The obtained pattern of blocks was compared with the arrangement of GTG bands on the 
corresponding mitotic chromosomes following similar studies in chicken and quail (Galkina 
et al. 2001, Rodionov et al. 2002a, Schmid et al. 2005). 
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Results 
The structure of the lampbrush chromosomes was analysed paying special attention to the 
comparison of the transcription-active parts and the GTG pattern on the corresponding 
mitotic chromosomes. The numbering of mitotic chromosome G bands corresponds with 
the numbering shown in the partial ideogram (Figure 1).

Figure 1
Partial ideogram of goose chromosomes – GTG banding

The dark blocks presented on the LBC diagram correspond to the location of the active 
transcription regions. The following marker structures were identified on the lampbrush 
chromosomes: TLs telomeric loops, TLLs telomeric lumpy loops, TBLs telomeric bow-like 
loops, MLs marker loops, DB double bridge, GLLs giant lumpy loops, PBs protein bodies. 

The analysis results are presented in figures 2-7 consecutively for each chromosome pair. 
In order to ensure that the figures are clear, the ideograms of mitotic chromosomes were 
adjusted to the size of corresponding lampbrush bivalents. 

Comparison of LBC 1 and mitotic chromosome 1

A wide subtelomeric block (A) in the bivalent is analogous to band (24) situated in the distal 
p-arm part of the mitotic chromosome. The narrow block (B) corresponds to band (22) 
whereas the two blocks (C) and (D) located side by side correspond to band (14). The wide 
block (E) corresponds to band (12) which is situated in the subcentromeric part of the mitotic 
chromosome p arm. The narrow block (F) in the bivalent is equivalent to the subcentromeric 
band (12) on the mitotic chromosome q arm. The two subsequent blocks (G) and (H) of similar 
width correspond to the wide band (24) on the mitotic chromosome. The two wide blocks (I) 
and (J) correspond to the wide band (24) on the mitotic chromosome. Two very thin blocks, 
(K) and (L) can be seen in the position which, on the mitotic chromosome, is occupied by a 
wide light band (31) on the bivalent. The sequence of the next four blocks: (M), (N), (O) and (P) 
on the bivalent was classified as corresponding to the arrangement of the two wide bands, 
(32) and (34) in the distal part of the mitotic chromosome q arm.
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Figure 2
The first LBC with indicated marker structures (a); graphic comparison of transcription activity of the first LBC 
and G bands on the first mitotic chromosome (b); G band pattern on the first mitotic chromosome (c). 

Comparison of LBC 2 and mitotic chromosome 2

The two blocks (A) and (B) correspond to bands (24) and (22) located in the distal part 
of the mitotic chromosome arm. The wide block (C) on the bivalent corresponds to the 
wide band (14). The sequence of two blocks: wide (D) and narrow (E) was classified as 
corresponding to band (12) located in the subcentromeric part of the mitotic chromosome 
p arm. The wide block (F) corresponds to the subcentromeric band (12) on the q arm of 
the mitotic chromosome. The arrangement of the two subsequent blocks (G) and (H) 
was classified as corresponding to the wide band (14). The next three blocks (I), (J), and 
(K) on the bivalent correspond to, respectively, bands (16), (22), and (24) on the mitotic 
chromosome.
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Figure 3
The second LBC with indicated marker structures (a); graphic comparison of transcription activity on the 
second LBC and G bands on the second mitotic chromosome (b); G band pattern on the second mitotic 
chromosome (c). 

Comparison of LBC 3 and mitotic chromosome 3

In the subtelomeric part of the bivalent, the wide block (A) was identified as corresponding 
to band (12) on the p arm of the mitotic chromosome. Blocks (B), (C), and (D) corresponded 
to bands (12), (22), and (24) of the mitotic chromosome. A sequence of three narrow blocks: 
(E), (F), and (G) was observed in the interstitial part of the bivalent at the background of a 
wide region without loops. The region was classified as corresponding to the wide light 
band (21) which constituted a boundary between the proximal and distal blocks on the 
mitotic chromosome. A very wide subtelomeric block (H) on the bivalent was classified 
as corresponding to the sequence of bands (32) and (24) in the distal part of the mitotic 
chromosome q arm.
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Figure 4
The third LBC with indicated marker structures (a); graphic comparison of transcription activity on the third 
LBC and G bands on the third mitotic chromosome (b); G band pattern on the third mitotic chromosome (c). 

Comparison of LBC 4 and mitotic chromosome 4

A very wide band (A) of the bivalent corresponded to the wide band (14) in the interstitial 
part of the q arm of the mitotic chromosome. The narrow block (B) corresponded to the 
narrow band (12) in the subcentromeric part of the mitotic chromosome p arm. Block (C) 
was classified as corresponding to band (12) whereas the wide block (D) was assumed to 
correspond to the wide band (22). The sequence of two blocks: narrow (E) and wide (F) in 
the distal part of the bivalent was classified as corresponding to band (24) on the mitotic 
chromosome.

Comparison of LBC 5 and mitotic chromosome 5

The wide block (A) of the bivalent was classified as corresponding to the wide band (12). The 
centrally located block (B) corresponded to band (14). Block (C) on the bivalent corresponded 
to the distally situated band (16) on the mitotic chromosome.
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Figure 5
The fourth LBC with indicated marker structures (a); graphic comparison of transcription activity on the fourth 
LBC and G bands on the fourth mitotic chromosome (b); G band pattern on the fourth mitotic chromosome (c). 

Figure 6
The fifth LBC with indicated marker structures (a); graphic comparison of transcription activity on the fifth 
LBC and G bands on the fifth mitotic chromosome (b); G band pattern on the fifth mitotic chromosome (c). 
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Comparison of the lampbrush sex bivalent and mitotic chromosomes Z and W

The two wide blocks (A) and (B) of the bivalent corresponded to bands (14) and (12) on the 
mitotic chromosome. The wide block (C) corresponded to band (12) of arm q of the mitotic 
chromosome. Block (D) corresponded to band (22) whereas the distal block (E) corresponded 
to band (24) on the mitotic Z chromosome.

Figure 7
The sex LBCs with indicated marker structures (a); graphic comparison of transcription activity on the sex LBC 
and G bands on the sex mitotic chromosomes (b); G band pattern on the sex mitotic chromosomes (c). 

Discussion
The comparison of the location of regions with and without loops on the analysed lampbrush 
chromosomes with the GTG pattern of the corresponding mitotic chromosomes revealed 
that the arrangement of regions with side loops on the LBCs, which are transcription-active, 
corresponded to the GTG pattern on the mitotic chromosomes.

Lampbrush chromosomes constitute a new model in avian cytogenetics and have been 
increasingly more often used in analyses of poultry chromosomes, especially since it was 
found that the arrangement of transcription-active regions of LBCs is typical of the species, 
similarly to the banded pattern of mitotic chromosomes.

The transcription-active regions of the LBCs with well-developed side loops corresponded 
to the positive G bands. The number of the transcription-active regions determined on the 
lampbrush chromosomes was larger than that of the analogous G bands on the corresponding 
mitotic chromosomes. It is a result of a less condensed structure of the LBCs which makes it 
possible to obtain a pattern with a higher resolution. Additional bands observed on the LBCs 
corresponded to the location of the wide positive bands in the determined regions of the 
mitotic chromosomes. Consequently, the pattern of G bands and the pattern of dark bands 
on the bivalent diagram were classified as analogous.
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Studies involving a comparison of transcription active regions on LBCs and the banded 
pattern of mitotic chromosomes have been carried out in chickens. Gaginskaya & Tsvetkov 
(1988), Rodionov et al. (1989), Galkina et al. (2001), and Rodionov et al. (2002a) used 
combined staining which included an application of two fluorochromes (DAPI and A3-CMA 
chromomycin) and found that the regions of chromomeres which were DAPI-positive stained 
corresponded to positive bands obtained in the G or Q banding which in turn corresponded 
to the regions that were rich in A-T nucleobases. The CMA stained regions corresponded to 
the regions which were rich in G-C nucleobases, i.e. negative bands of the G and Q banding, 
and negative bands of the R banding. The discussed analogies are supported by the data 
included in the Second Report on Chicken Genes and Chromosomes (Schmid et al. 2005). 

The ZW bivalent is the most difficult to identify in the whole avian LBC set. It looks like 
a markedly asymmetric single chromosome which predominantly has a typical lampbrush 
structure along its length. The W chromosome is almost completely heterochromatic and 
often assumes a characteristic bar-like shape in the distal part of the Z chromosome. The Z 
and W chromosomes are connected by one chiasma in proximity to the telomere (Mizuno & 
Macgregor 1998). Difficulties in identifying the sex bivalent were also indicated by Solovei et 
al. (1990, 1993, 1998), Mizuno & Macgregor (1998). 

An analysis of lampbrush sex bivalent structure was presented in a paper by Andraszek et 
al. (2009). The authors analysed the structure of lampbrush sex bivalents sampled from geese 
prior to and after the reproductive season. The chromosomes were found to have a different 
appearance before and after the egg laying. The differences stemmed from a change in 
the transcription activity. This confirms the connection between the transcription activity 
and physiological processes of the body. The changes are reflected in the morphological 
structure of the chromosome. 

Epigenetic mechanisms active at the level of DNA methylation and histone modification 
change chromatin structure and control the reciprocal relation between active and inactive 
genes. An open heterochromatin conformation is transcription-active whereas a »closed« 
conformation is connected with the so-called process of transcription breakdown (Grummt & 
Pikaard 2003). Lampbrush chromosomes are divided into regions of closed chromatin where 
sequence expression is undetectable. LBC loops are a classical example of open chromatin. 
Moreover, the transcription in the oocyte is a complex process in which, apart from LBCs, 
there are other nucleus structures engaged (Gall et al. 1999, Gall 2000, 2002, Saifitdinova 
2003, Morgan 2007, Gaginskaya et al. 2009).

Studies on the structure of lampbrush chromosomes have been carried out for almost 
100 years. Yet, only a concept of general LBC morphology has been accepted. The factors 
that initiate changes that transform condensed chromosomes into decondensed lampbrush 
structures are unknown. The use of LBCs in avian cytogenetics makes it possible to more 
broadly investigate the structure of microchromosomes, and offers a unique chance to 
analyse the ZW bivalent. What seems especially promising is the possibility to use lampbrush 
chromosomes to map bird genomes. The strategy can combine chromosome marker 
mapping and physical mapping of genes by means of the FISH technique, as well as involve 
genetic maps prepared on the basis of chiasma frequency in bivalents.
In conclusion, the comparison of the transcription activity of lampbrush chromosomes 
with the GTG pattern of corresponding mitotic chromosomes confirmed that the 
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transcription-active areas with the side loops corresponded with the G-positive bands in 
the mitotic chromosomes. The results of the present work confirm the inference that the 
GTG differentiation staining of mitotic chromosomes in order to compare the structure of 
particular lampbrush chromosomes stained with CBB R250 constitutes an alternative to 
similar analyses carried out with the use of fluorochromes.
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