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Abstract
Random regression analyses of weight data from birth to 396 days were done using 22 141 
weight records of 1 951 Horro lambs. Six different models formed from three different 
orthogonal polynomial regressions (legendre scale)orders (quadratic, cubic, quartic) of fit 
for both additive genetic and animals’ permanent environmental effects, with assumption 
of either homogeneous or heterogeneous residual variance, were compared. Fixed effects of 
year and type of birth, sex and age of dam were fitted along with a fourth order polynomial. 
Both likelihood ratio test (LRT) and Akaike’s Information Criterion (AIC) were used for model 
comparison. Model fit improved with increased order of polynomial and assumption 
of heterogeneity of residual variance. Components for additive genetic and permanent 
environmental (co)variance increased from 0.03 and 0.09 at birth to 23.8 and 37.6 at 396 days 
of age, respectively. The first three eigenvalues of the coefficient matrix of the additive genetic 
covariance accounted for about 98 % of the sum of all the eigenvalues. Heritability estimates 
have shown a declining and increasing trend at different parts of the trajectory, the lowest 
estimate being 0.14 for weight at birth while the highest being 0.36 for weight at about 390 
days of age. Higher heritability estimates in previous uni- and bi-variate models and in the 
current study and also strong correlation with weight at early age makes weight at one year of 
age the most important trait to consider in improving productivity in Horro sheep.

Keywords: orthogonal polynomial, animal model, heritability estimates, eigenvalues,   
 eigenfunctions, genetic correlations

Zusammenfassung
Schätzung von (Ko)Varianzfunktionen für das Jährlingswachstum von 
Horroschafen in Äthiopien mittels Random Regressionsmodellen

Für die Random Regressionsanalyse konnten 22141 Gewichtsdaten von 1951 Horroschafen, 
erfasst von Geburt bis zum Alter von 396 Tagen, genutzt werden. Verglichen wurden 
sechs unterschiedliche Modelle wobei die fixen Effekte Jahr, Geburtstyp, Geschlecht 
und Alter der Mutter polynominal angeordnet wurden. Für den Modellvergleich 
wurde der Likelihoodverhältnistest sowie Akaikes Informationskriterium genutzt. Die 
Modellanpassung verbesserte sich bei höherer Einordnung im Polynominal und der 
Annahme von Heterogenität der Restvarianz. Die Komponenten der additiven genetischen 
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Varianz und der permanenten Umwelt Kovarianz verbesserten sich von 0,03 und 0,09 
bei Geburt bzw. 23,8 und 37,6 im Alter von 396 Tagen. Die ersten drei Eigenvalues in der 
Koeffizientenmatrix der additiven genetischen Kovarianz lagen mit über 98 % höher 
als die Summe aller Eigenvalues. Die Heritabilitätsschätzung zeigt eine Abnahme und 
Trendanstieg bei einigen Teilen der Kurvenbahn, der geringste Schätzwert lag bei 0,14 für 
das Geburtsgewicht während der höchste Wert 0,36 für das Gewicht über 390 Tage erreichte. 
Höhere Heritabilitätsschätzwerte in vorangegangenen ein- und zweidimensionalen 
Varianzmodellen und der gegenwärtigen Schätzung ebenso wie die Gewichtskorrelationen 
im frühen Alter machen das Jährlingsalter zum wichtigsten Merkmal für die Erreichung 
einer besseren Produktivität des Horroschafes. 

Schlüsselwörter: orthogonale Polynome, Tiermodell, Heritabilitätsschätzung,   
  Eigenvalues, Eigenfunktion, genetische Korrelation

Introduction
Weights of an animal measured at different stages (longitudinal data) are an extension of the 
same trait measured along a trajectory of time. Conventionally repeatability or multivariate 
models are used and occasionally growth curve models were also used. In the repeatability 
model assumptions are that variances are homogeneous and genetic correlations between 
measurements at different stages are unity. These assumptions are rarely met for such weights 
are changing with time. In multivariate analysis in addition to possible over-parameterization 
when a large number of longitudinal measurements are considered, the use of unstructured 
covariance matrix for data which are structured is not appropriate. Additionally such analytical 
models do not provide information about the trend of change of a trait over time. The growth 
curve approach where a few parameters describing the curve are derived from the data and 
the components of variation for such parameters are determined, assumes that a certain 
standard curve equally fits the growth of all animals. However, in practice it is possible that 
different growth curves could have a different degree of fit for different animals.

Currently random regression models are being applied in the analysis of longitudinal 
growth in cattle (MEYER 1999, ALBUqUERqUE and MEYER 2001, ROBERT-GRANIé et al. 2002, 
KREJčOVá et al. 2007) sheep (LEWIS and BROTHERSTONE 2002, FARHANGFAR et al. 2007, 
KESBI et al. 2008) pig (HUISMAN et al. 2002) and test-day lactation (JAMROZIK and SCHAEFFER 
1997, OLORI et al. 1999, KETTUNEN et al. 2000, POOL and MEUWISSEN 2000, TAKIMA and 
AKBAŞ 2007) data. These models use polynomials in time to describe mean profiles with 
random coefficients to generate a correlation among the repeated observations on each 
individual (ROBERT-GRANIé et al. 2002). This approach has the advantage of studying change 
and increases statistical power. This is due to units serving as their own control and due 
to the possibility of estimating (co)variance components at any point on the trajectory of 
time. Additional advantages include the use of weight measurements without any need to 
correct for age and the reduction in the number of parameters to be estimated as compared 
to multivariate analysis. Lower approximate standard error estimates for parameters as 
compared to estimates from univariate analysis (FISCHER et al. 2004) are also additional 
advantages of the random regression analysis. 
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In the tropics where large fluctuation in environmental variables, particularly in availability 
of feed, is common concurrent fluctuations in weight (growth) of animals is likely to occur. 
Under this condition the use of random regression analyses where the trait is the whole set 
of measurements along the trajectory may have an advantage in obtaining reliable estimates 
of parameters.

Previously univariate and bivariate analyses of data on birth, weaning, six-month and 
yearling weights have been done (ABEGAZ et al. 2002). In this study different random 
regression models were applied in the analysis of weight data taken from birth to 396 days 
of age with the objective of identifying the appropriate model, obtaining more accurate 
estimates and identifying the optimal selection age for live weight. 

Materials and methods
Data: The data used in this study were collected from a flock of Horro sheep during the period 
1978 to 1997 (excluding lambs born in 1984) at Bako research center, Ethiopia. Details on the 
environment and flock management were decscribed in a companion paper (ABEGAZ et al. 
2002). Body weight recorded from birth to a maximum of 396 days of age (no weight was 
available for ages 1 to 9 days) was used. About 8, 7, 6, 6, 12, 16 and 45 % of the animals have 
7, 8, 9, 10, 11, 12 and 13 weight measurements, respectively. All animals have a birth weight 
record. In order to explore the resulting change from fitting polynomials of higher order the 
edit criteria followed was to keep animals with a minimum of seven weight records. Due to 
this no record from lambs born in the year 1984 was retained. A total of 22 141 records of 
1 951 animals from 158 sires and 679 dams were eventually available. To decrease computer 
memory requirements observations were categorized to the nearest third day of age (0, 9, 
12,…396 d). 
Statistical analysis: Fixed effects with a significant (P<0.05) effect on weights within the range 
of age in this study were included in the analytical model. These include year of birth, type of 
birth, sex and age of dam. To determine the most appropriate polynomial order to be fitted 
as fixed effect, preliminary analyses with ordinary polynomials of third to seventh order were 
carried out. Starting from the fourth order, the coefficient of determination and standard error 
of the regression stabilized (not shown here). Thus in all cases, weight as a function of age in 
days at weighing was included as a fixed regression of orthogonal polynomial of order four 
(cubic). This fixed regression describes the average growth curve of all animals with records.

Covariance functions for the random additive genetic and animal’s permanent 
environmental component of variance were modeled with orthogonal polynomial regressions 
of varying order. Estimations were done by REML using a random regression model with the 
DxMRR statistical package (MEYER 1998a). The general model in matrix notation is:

 y = Xb + Za + Wp + e (1)

where y is a vector of weights of each animal, b is a vector of fixed effects including year, sex, 
type of birth and age of dam and a polynomial of age in days, a is the vector of additive genetic 
regression, p is the vector of permanent environmental random regression coefficients and 
e is the vector of residual effects. X, Z and W are corresponding design matrices. In all cases 
orthogonal polynomials on the legendre scale were used.
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A total of six models (Table 1) formed by concatenation of sub-models varying in the order of 
polynomial fit (quadratic, cubic and quartic) and in the assumption about the distribution of the 
residual variance (homogenous or heterogeneous) were compared. Repeated analyses using 
the AI-REML algorithm were done until no change was observed in log likelihood between 
consecutive runs. A subsequent analysis using the derivative free Powel’s method was also 
carried out to ensure convergence to a global maximum. Comparison for better order of fit of 
the different models was done by likelihood ratio test (LRT) and Akaike’s Information criteria 
(AIC) as suggested by BURNHAM and ANDERSON (1998). A model with significantly the highest 
(P<0.05) LRT and with the lowest AIC was considered to be the most appropriate model.

A reduced model of rank four (of Model 6) was used to calculate eigenfunctions for additive 
genetic and permanent environmental effect. Eigenfunctions were obtained as 

 (2)
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Results
Weight measurements across the age range are presented in Figure 1. Weight increased from 
2.7 kg at birth to 30 kg at about 390 days of age. Fluctuation in mean weight at consecutive 
ages was observed. This was mainly due to measurements for consecutive ages (days) not 
being from identical sets of animals. 
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liklihood (LRT) (P<0.05) and the lowest AIC were observed for Model 6. Both values improved 
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LRT and AIC, Model 6 was found to be superior to all other models.

 

 

 

 
 

a is the vector of additive genetic regression, p is the vector of permanent 
environmental random regression coefficients and e is the vector of residual 
effects. X, Z and W are corresponding design matrices. In all cases orthogonal 
polynomials on the legendre scale were used. 
  
A total of six models (Tab. 1) formed by concatenation of sub-models varying in 
the order of polynomial fit (quadratic, cubic and quartic) and in the assumption 
about the distribution of the residual variance (homogenous or heterogeneous) 
were compared. Repeated analyses using the AI-REML algorithm were done until 
no change was observed in log likelihood between consecutive runs. A subsequent 
analysis using the derivative free Powel’s method was also carried out to ensure 
convergence to a global maximum. Comparison for better order of fit of the 
different models was done by likelihood ratio test (LRT) and Akaike’s 
Information criteria (AIC) as suggested by BURNHAM and ANDERSON (1998). 
A model with significantly the highest (P<0.05) LRT and with the lowest AIC was 
considered to be the most appropriate model. 
 
A reduced model of rank four (of Model 6) was used to calculate eigenfunctions 
for additive genetic and permanent environmental effect. Eigenfunctions were 
obtained as  
 

    

! 

"i = vij# j t *( )
j =1

k =1

$  

Where 
i

!  is the ith eigenfunction of the covariance function, ij
v  is the ijth element 

of the eigenvector and )( *t
j

!  is the jth order legendre polynomial of the 

standardized age t*.  
 

 
Table 1 Description of models used in random regression analysis 
 
 

Order of polynomial fit  
Model Fixed Random a) 

No. of error 
measures b) 

1 4 3 1 
2 4 3 4 
3 4 4 1 
4 4 4 4 
5 4 5 1 
6 4 5 4 

                 a) For both additive genetic and permanent environmental effects 



Arch Tierz 53 (2010) 6, 689-700 693

Figure 1
Average weights with the range of ages used in the study
Altersabhängige Entwicklung der Durchschnittsgewichte

Table 2 
Log-likelihood (Log L), likelihood ratio test (LRT) and differences in Akaike’s information criteria (AIC) values 
for different models
Log-L sowie LRT und Unterschiede der AIC Werte für die 6 Modelle

Model No. of parametersa) Log L LRT AIC differences

1 13 −25 904.7 0.0 5 706.4
2 16 −24 771.2 2 267.0 3 445.4
3 21 −25 226.5 1 356.4 4 366.0
4 24 −24 153.8 3 501.8 2 226.6
5 31 −24 043.0 3 723.4 2 019.0
6 34 −23 030.5 5 748.4 0.0
a)[k(k+1)]+NE, for k=order of fit, NE number of error measures

Estimates of heritability and the ratios of permanent environment to the phenotypic variance 
obtained from the different models (for points at 30 days interval) are presented in Table 3. 

The heritability estimates for the entire period obtained from Model 6 has increased from 
about 0.14 at birth to about 0.33 around two months of age and then declined to 0.26 at 
about 200 days of age to increase again to 0.36 at about 390 days of age. As was the case with 
the variance components, heritability estimates showed a drop at about 90 days of age, but 
drastic increase towards the end of the period.

Estimates differed between models fitting different polynomial order and error measures 
for weight at birth and early ages. For most of the growth period afterwards, estimates within 
the same polynomial order of fit but with different error measures, (Model 1 vs. 2, Model 3 
vs. 4, Model 5 vs. 6) were more similar. The animals’ permanent environmental effect has 
accounted for 0.42 to 0.67 % of the total variation. Repeatability values (heritability + ratio of 
permanent environmental variance) ranged from 0.56 at birth to 0.98 at 390 days of age. The 
repeatability value obtained in this study for weights at later ages was very high.

Correlation estimates for additive genetic, and phenotypic effects from Model 6 are 
presented in Table 4. Correlations between weight at birth and at other ages were low in 
all cases. Genetic correlation estimates showed a more fluctuating trend than phenotypic 
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correlations. For phenotypic correlations, estimates increased steadily as the difference in 
age at measurements decreased. The same is true for permanent environmental correlation 
(not shown here).

Estimates of coefficients of covariance function and eigenvalues for additive genetic 
and permanent environmental effects from Model 6 are presented in Table 5 and Table 6, 
respectively. For additive genetic covariance function the first, second and third eigenvalues 
accounted for 83.2, 9.1 and 5.8 %, while for permanent environmental effect they accounted 
for 87.7, 8.9 and 2.5 %, respectively. One of the eigenvalues of the covariance function was 
close to zero. Eigenfunctions with very small (or zero) eigenvalues represent deformations 
for which there is little (or no) additive genetic variation (KIRKPATRICK et al. 1990) and a more 
parsimonious fit of the covariance functions might be obtained by estimating a reduced rank 
of the coefficient matrix, forcing very low values of the eigenvalue to zero (MEYER 1998b). 
Hence eigenfunctions of the additive covariance function were estimated from a reduced 
model of rank four. Corresponding eigenfunctions for the first four eigenvalues of the 
additive covariance function are presented in Figure 2. The first eigenfunctions were positive 
throughout the growth period but have shown a decline with age. The second eigenfunction 
was negative up to about 90 days of age and positive afterwards. The third and fourth 
eigenvalues were very low in value and their corresponding eigenfunctions are of very little 
practical significance. 
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Table 3 
Heritability estimates and variance ratios of permanent environmental variance as proportion of total 
phenotypic variance and residual variance from the different models
Heritabilitätsschätzwerte bei unterschiedlichem Alter und Modell

 Age, days Heritability     
  Model
  1 2 3 4 5 6     
 0 0.00 0.13 0.01 0.13 0.03 0.14
 30 0.07 0.12 0.18 0.25 0.25 0.31
 60 0.16 0.20 0.28 0.31 0.30 0.32
 90 0.20 0.23 0.30 0.31 0.28 0.30
 120 0.22 0.25 0.29 0.28 0.28 0.28
 150 0.23 0.25 0.27 0.26 0.27 0.27
 180 0.24 0.26 0.25 0.25 0.27 0.26
 210 0.25 0.25 0.24 0.25 0.25 0.25
 240 0.26 0.26 0.25 0.26 0.27 0.27
 270 0.28 0.27 0.27 0.28 0.30 0.30
 300 0.29 0.28 0.30 0.31 0.34 0.35
 330 0.31 0.30 0.34 0.35 0.36 0.35
 360 0.34 0.32 0.38 0.40 0.35 0.35
 390 0.36 0.34 0.42 0.44 0.35 0.36
Permanent environmental ratioa)      
 0 0.01 0.17 0.01 0.18 0.01 0.42
 30 0.24 0.27 0.29 0.37 0.37 0.44
 60 0.43 0.46 0.46 0.50 0.51 0.55
 90 0.53 0.55 0.53 0.56 0.58 0.61
 120 0.58 0.59 0.58 0.58 0.62 0.61
 150 0.61 0.62 0.62 0.62 0.64 0.63
 180 0.63 0.63 0.65 0.65 0.66 0.66
 210 0.64 0.62 0.67 0.65 0.68 0.67
 240 0.65 0.63 0.68 0.65 0.68 0.67
 270 0.65 0.63 0.67 0.65 0.65 0.64
 300 0.64 0.63 0.65 0.63 0.62 0.62
 330 0.63 0.63 0.62 0.60 0.61 0.61
 360 0.62 0.62 0.59 0.56 0.63 0.62
 390 0.61 0.61 0.56 0.53 0.63 0.61
 Residual variance b)    
 1 1.99 0.16 1.56 0.15 1.17 0.09
 2 - 1.83 - 1.23 - 0.84
 3 - 1.92 - 1.76 - 1.42
 4 - 2.76 - 2.11 - 1.50
a)Permanent environmental ratio (variance between repeated records of animal/phenotypic variance), b)One 
(homogeneous) or four (weight at birth, 10 to 90 days, 91 to 180 days and 180 to 408 days) error measures.
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Table 4
G

enetic (below
 diagonal) and phenotypic (above diagonal) correlation betw

een w
eights at different stages estim

ated from
 m

odel 6
Genetische (unter Diagonale) und phänotypische (über Diagonale) Korrelationen zw

ischen Gew
ichten und Alter bei M

odell 6

Age, days 
0 

30 
60 

90 
120 

150 
180 

210 
240 

270 
300 

330 
360 

390

0 
- 

0.23 
0.21 

0.21 
0.20 

0.19 
0.18 

0.17 
0.16 

0.14 
0.13 

0.12 
0.12 

0.13
30 

0.31 
- 

0.79 
0.75 

0.67 
0.61 

0.56 
0.54 

0.53 
0.52 

0.50 
0.49 

0.45 
0.34

60 
0.31 

0.97 
- 

0.87 
0.81 

0.76 
0.71 

0.67 
0.64 

0.60 
0.57 

0.55 
0.52 

0.44
90 

0.33 
0.87 

0.96 
- 

0.88 
0.85 

0.82 
0.77 

0.72 
0.66 

0.60 
0.58 

0.56 
0.52

120 
0.32 

0.74 
0.87 

0.97 
- 

0.88 
0.86 

0.82 
0.76 

0.68 
0.62 

0.59 
0.59 

0.57
150 

0.29 
0.63 

0.79 
0.92 

0.99 
- 

0.90 
0.87 

0.81 
0.74 

0.67 
0.64 

0.63 
0.63

180 
0.25 

0.58 
0.74 

0.87 
0.95 

0.99 
- 

0.91 
0.87 

0.80 
0.74 

0.71 
0.70 

0.67
210 

0.19 
0.60 

0.72 
0.83 

0.89 
0.93 

0.98 
- 

0.91 
0.87 

0.83 
0.79 

0.77 
0.71

240 
0.12 

0.64 
0.71 

0.76 
0.79 

0.82 
0.89 

0.97 
- 

0.93 
0.90 

0.87 
0.84 

0.74
270 

0.08 
0.65 

0.68 
0.67 

0.66 
0.69 

0.77 
0.88 

0.97 
- 

0.94 
0.93 

0.89 
0.75

300 
0.07 

0.65 
0.65 

0.61 
0.58 

0.59 
0.68 

0.81 
0.93 

0.99 
- 

0.95 
0.92 

0.77
330 

0.10 
0.64 

0.63 
0.59 

0.56 
0.57 

0.65 
0.79 

0.91 
0.97 

0.99 
- 

0.95 
0.82

360 
0.18 

0.57 
0.59 

0.60 
0.60 

0.62 
0.70 

0.80 
0.89 

0.92 
0.94 

0.97 
- 

0.91
390 

0.30 
0.34 

0.45 
0.55 

0.63 
0.68 

0.72 
0.75 

0.74 
0.70 

0.69 
0.75 

0.89 
-

Table 5
Coefficients of covariance functions betw

een random
 regression coefficients for direct genetic effect and am

ount and percent of eigenvalues under M
odel 6

Kovarianzfunktionskoeffizient zw
ischen dem

 Random
 Regressionskoeffizienten für den direkten genetischen Effekt und Eigenvalues sow

ie %
 bei M

odell 6   

 
Coefficients of covariance function

a 
 

 
 

Effect  
0 

1 
2 

3 
4 

Eigenvalues 
%

 0 
4.703 

1.855 
-1.022 

1.897 
0.149 

11.982 
83.2

1 
1.855 

11.539 
14.414 

−9.875 
−14.723 

1.313 
9.1

2 
−1.022 

14.414 
35.160 

−15.757 
−35.555 

0.002 
0.0

3 
1.897 

−9.875 
−15.757 

14.038 
18.255 

0.838 
5.8

4 
0.149 

−14.723 
−35.555 

18.255 
39.078 

0.263 
1.8

a0 intercept, 1 linear, 2 quadratic, 3 cubic, 4 quartic
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Table 6
Coefficients of covariance functions between random regression coefficients for animals’ permanent effect 
and the eigenvalues under Model 6
Kovarianzfunktionskoeffizient zwischen Random Regressionskoeffizienten des ständigen Tiereffektes und 
Eigenvalues sowie % bei Modell 6

 Coefficients of covariance functiona     
Effect  0 1 2 3 4  Eigenvalues %   
0 12.239 6.463 −4.005 1.119 −0.382 24.902 87.7
1 6.463 15.644 5.796 −8.924 −5.433 2.535 8.9
2 −4.005 5.796 19.501 −4.593 −14.329 0.006 0.0
3 1.119 −8.924 −4.593 11.521 6.020 0.703 2.5
4 −0.382 −5.433 −14.329 6.020 15.206 0.260 0.9
a0 intercept, 1 linear, 2 quadratic, 3 cubic, 4 quartic

Figure 2
Eigenfunctions of additive covariance function corresponding to the eigenvalues of a reduced model of rank 4
Eigenfunktion der additiven Kovarianzfunktion entsprechend Eigenvalues des reduzierten Modells 4

Discussion
Model fit improved with increasing polynomial regression order. Improved fit was also realized 
for models with the same order of fit for the random effects but with varying assumptions 
about the distribution of the residual variance. For assumption of heterogeneity of the 
residual variance log likelihood increased by 1 134, 1 073 and 1 012 over assuming uniform 
variance for the quadratic, cubic and quartic order of fit, respectively. This implies that part 
of the residual variance would be taken up by the increase in the order of polynomial fit. 
For most of the growth periods (after the early ages) estimates of heritability and ratio of 
permanent environmental effect within the same polynomial order of fit but with different 
error measures, (Model 1 vs. 2, Model 3 vs. 4, Model 5 vs. 6) were more similar. Similarly 
OLORI et al. (1999), found little difference in estimates of additive genetic and environmental 
variances of test day records in dairy cows when fitting different numbers of measurement 
error variances. MEYER (2000) also reported little difference in estimates of between-animal 
standard deviations for higher (≥12) orders of fit with widely varying number of error measures 
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(1 to 66). Therefore, for sufficient order of fit, different regression curves to model between-
animal variations can be examined under the assumption of homogeneous measurement 
error variances (MEYER 2000). In this study, high orders of fit (six and seven) failed to converge 
to a global maximum and assuming heterogeneity was therefore necessary. 

The heritability estimate for birth weight from Model 6 in the current study was lower than 
previous estimates from bivariate analyses (ABEGAZ et al. 2002) while estimates for weaning 
and yearling weight were slightly higher. Change in the trend of heritability estimates were 
observed which is similar to trends reported by AZIZ et al. (2005) for Japanese Black cattle 
and MOLINA et al. (2007) for Spanish Merino sheep. 

For weight at six month the estimates from both studies were similar. Due to different edit 
criteria used (animals with number of weight records of less than seven were not included 
in the current study) the data set for birth and weaning weight in the previous study were 
much higher than (3 664 and 2 752 Vs 1 951) used in the current study and comparison would 
be difficult. More similar data sets (2 152 Vs 1 951) were used for six-month weight and this 
may account for the similarity in the estimate from both previous and current analyses. 
However total heritability estimates from univariate analysis in the previous study (ABEGAZ 
et al. 2002), with the exception of birth weight, were lower than estimates in this study. In 
addition to differences in the data set, this may be due to the exclusion of maternal effects in 
this study. For traits that are likely to be influenced by the maternal effect the exclusion of this 
effect in the model of analyses would result in overestimation of heritability. Similarly, LEWIS 
and BROTHERSTONE (2002) reported higher heritability estimates from random regression 
models ignoring maternal effects than models which included them, with a decline in the 
difference with increasing age. 

In the present study the animals’ permanent environmental effect has accounted for 42 
to 67 % of the total variation and repeatability values ranged from 0.56 at birth to 0.98 at 
390 days of age. In addition to the possibility of improved partitioning of the total variance 
into environmental and genetic origin, the permanent environmental effect (and the 
repeatability) indicates how reliable estimates at a specified age could be. The repeatability 
value increased with an increase in age. Similarly, in pigs, HUISMAN et al. (2002) reported 
increasing values of repeatability which reached a maximum of 0.96 (h2=0.18; ratio of 
permanent environment=0.79) for weight at about 190 days of age. In contrast MEYER (2001) 
reported relatively lower and stable estimates of repeatability with change in age for weights 
from birth to weaning in beef cattle.

Genetic and phenotypic correlation estimates for additive genetic and phenotypic effects 
have shown an increase with decrease in time between the ages considered. Correlations 
between weight at birth and at other ages were low in all cases. Previous bivariate analyses 
(ABEGAZ et al. 2002) have also resulted in low direct additive and phenotypic correlations 
between birth weight and weight at weaning (about three months of age), 6 and 12 months 
of age. Genetic correlation estimates showed a more fluctuating trend than phenotypic 
correlations. Inappropriate modelling of the genetic effects as a result of ignoring the maternal 
effect might have caused this. Since the maternal genetic effect varies with age, corresponding 
(co)variances and resulting correlations are also likely to vary. Fluctuations of correlations of 
a much higher magnitude for monthly weights of beef cows related with sampling variation 
in the genetic covariances were reported by MEYER (1998b). For phenotypic correlations, 
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estimates increased steadily as the difference in age at measurements decreased. The 
same is true for permanent environmental correlation (not shown here). Genetic correlation 
estimates between weaning (about 90 days of age), six months and yearling weight from 
previous work (ABEGAZ et al. 2002) were in the range of 0.84 to 0.98. Estimates in the current 
study were lower (0.60 to 0.87) while phenotypic correlation estimates were slightly higher. 
Inclusion of the permanent environmental effect in the current random regression analysis 
makes straightforward comparison impossible.

The contribution of the first eigenvalue of the additive genetic covariance function (83.2 %) 
to the total in this study is lower than the value of 95 % reported by LEWIS and BROTHERSTONE 
(2002) for a similar order of fit. This indicates the existence of a sizeable variation (about 17 %) 
that needs to be explained by functions higher than the first order. From a different order of 
fit on cattle Albuquerque and MEYER (2001) also reported first eigenvalues accounting more 
than 93 % of the total. FARHANGFAR et al. (2007) however reported a 80 % contribution of the 
first eigenvalue for daily gain of Lori-Bakhtiari sheep with. 

 Eigenfunctions corresponding to the first eigenvalue of the additive covariance function 
have a positive value throughout the growth stage studied. This implies positive genetic 
correlations across all stages and that selection for weight at any age would result in an 
increase at all other ages (positive correlation). The second eigenfunction have changed 
from negative values to about 90 days of age to positive value afterwards. This suggests that 
genetic effects acting differently (probably different genes) before and after about 90 days 
of age and selection on this variable decreases weight at early ages, but increases weight 
at later ages. The eigenvalue represented by this value may be used to select for change in 
growth curve (e.g. select for lower birth and very early age weight and for higher weight 
at later ages [marketable age]). This may have an implication on finishing practices and on 
lambing ease in ewes.

In the current study however, limitations in not including maternal genetic and 
environmental effects may prohibit firm conclusions to be made with regard to the 
implication of the random regression analysis in selection. The study has shown the 
importance of appropriate polynomial regression order and modeling the residual variance. 
Consistent estimates in a previous and in the current study indicate that weight at about one 
year of age is the most important trait to consider in improving productivity in Horro sheep.
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