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Abstract
In the present study polymorphisms in the genes cathepsin B (CTSB), cathepsin D (CTSD), 
calpain, large polypeptide L2 (CAPN2), kallikrein 1 (KLK1) and transforming growth factor 
β1 (TGFB1) were investigated for association with scrapie susceptibility in sheep. Therefore 
single nucleotide polymorphisms in the respective genes were identified and examined 
for a potential impact on the gene function with different computer programs. Samples of 
72 atypical and 104 classical scrapie cases as well as of 443 clinically healthy flock mates 
were genotyped by PCR-based screening methods. Neither allele frequencies nor genotype 
frequencies showed significant differences between scrapie positive sheep and control 
animals in any of the investigated genes.
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Zusammenfassung
Polymorphismen in den Genen CTSB, CTSD, CAPN2, KLK1 und TGFB1 sind nicht 
mit Empfänglichkeit für atypische oder klassische ovine Scrapie assoziiert

In der vorliegenden Studie wurden Polymorphismen in den Genen Cathepsin B (CTSB), 
Cathepsin D (CTSD), Calpain, large polypeptide L2 (CAPN2), Kallikrein 1 (KLK1) und 
Transforming growth factor β1 (TGFB1) auf eine Assoziation mit Scrapieempfänglichkeit 
beim Schaf untersucht. Dazu wurden Einzelbasenpaaraustausche in den genannten Genen 
identifiziert und mit Hilfe verschiedener Computerprogramme auf einen möglichen 
Einfluss auf die Genfunktion analysiert. Proben von 72 atypischen und 104 klassischen 
Scrapiefällen sowie 443 klinisch gesunden Herdenmitgliedern wurden durch PCR-basierte 
Untersuchungsmethoden genotypisiert. Weder Allelfrequenzen noch Genotypfrequenzen 
zeigten signifikante Unterschiede zwischen Scrapie-positiven Schafen und Kontrolltieren in 
den untersuchten Genen.

Schlüsselwörter: Scrapie, Cathepsin, Calpain 2, Kallikrein 1, Transforming growth factor  
  β1
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Introduction
It has been indicated by several studies on quantitative trait loci (QTLs) in mouse and sheep 
that scrapie susceptibility is influenced by further gene loci besides the well known effects 
of prion protein (PrP) gene (PRNP) variants (LLOYD et al. 2001, MORENO et al. 2008, MORENO 
et al. 2003, STEPHENSON et al. 2000). This is interesting, especially in the case of atypical 
scrapie, where association between PrP haplotypes and susceptibility to the disease is not 
as stringent as in classical scrapie (LÜHKEN et al. 2007, MADEC et al. 2004, MOUM et al. 2005, 
ORGE et al. 2004).

The results of ARNOLD et al. (1995) and SUPATTAPONE et al. (1999, 2001) give evidence for a 
potential involvement of the endosomal cysteine protease cathepsin B (CTSB) in degradation 
of the abnormal prion protein isoform (PrPSc), which is underlined by the investigations 
of LUHR et al. (2004a, 2004b) who found out that degradation of PrPSc in scrapie infected 
neurons is carried out by cysteine proteases at a sour pH and that addition of a selective CTSB 
inhibitor leads to a significant increase of the PrPSc content. 

Concerning the lysosomal aspartate protease cathepsin D (CTSD), several expression 
studies reported an elevated concentration of the respective enzyme within the course 
of scrapie infection in mice (BROWN et al. 2004, RIEMER et al. 2004, XIANG et al. 2004). 
Furthermore, in brains of sporadic Creutzfeldt-Jakob disease patients a co-localisation of 
CTSD with intra- and perineural PrPSc deposits was observed (KOVACS et al. 2007).

The ubiquitous cysteinprotease calpain 2 (CAPN2) as well might play a role for scrapie 
susceptibility, as the inhibition of calpain prevented the accumulation of PrPSc in scrapie 
infected mouse brain cells and resulted in reduced prion titers (YADAVALLI et al. 2004). Here 
the elevation of C2, a cleavage product of PrPSc, was most efficiently suppressed by calpain 
inhibitor IV, an inhibitor of calpain 2 (ANGLIKER et al. 1992, YADAVALLI et al. 2004). In this 
context the content of C1, a fragment of PrPC which is present in the healthy brain, recovered 
to a normal level (YADAVALLI et al. 2004). 

MORENO et al. (2003) found a QTL for scrapie resistance on mouse chromosome 7, in 
which murine paralogues of the kallikrein 1 gene (KLK1) as well as the transforming growth 
factor beta gene (TGFB1) are located. Results of HOU et al. (2005) and IWADATE et al. (2003) 
indicated that the serine protease KLK1 stimulates the release of insulin like growth factor 1 
(IGF1), which plays a neuroprotective role in neurodegenerative disorders like Alzheimer 
disease (DORÉ et al. 1997). This is of interest as in the course of a scrapie infection the binding 
of IGF1 to its receptor is decreased (öSTLUND et al. 2001).

For TGFB1 BOCHE et al. (2006) claim a protective role with regard to transmissible 
spongiform encephalopathies. Furthermore in several models for experimental prion 
disorders elevated levels of TGFB1 have been detected (BAKER et al. 1999, WALSH et al. 2001). 

Therefore in the present study the genes cathepsin B (CTSB), cathepsin D (CTSD), calpain, 
large polypeptide L2 (CAPN2), kallikrein 1 (KLK1) and transforming growth factor β1 (TGFB1) 
were investigated for sequence variants and for their association with scrapie susceptibility.
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Materials and methods
Samples from 72 atypical and 104 classical scrapie positive sheep as well as 443 clinical 
healthy flock mates who served as control group were examined. Initially scrapie cases were 
identified by Bio-Rad Platelia rapid test, Prionics Check Western Blot test, or by Enfer TSE 
test. Scrapie diagnosis was confirmed and completed with the scrapie type by either SAF-
immunoblotting, IHC or both methods (BUSCHMANN et al. 2004, GRETZSCHEL et al. 2005).

DNA extraction was performed as described earlier (LÜHKEN et al. 2004). For sequence 
analysis primers were chosen from GenBank sequences of cattle and sheep and PCR was 
performed (Table 1). Sequence analysis was outcared at the ABI PRISM 377 sequencer (Applied 
Biosystems, Darmstadt, Germany) according to manufacturer’s instructions.

Table 1
Primers and PCR conditions used for sequence analysis of CTSB, CTSD, CAPN2, KLK1 and TGFB1
Für die Sequenzanalyse von CTSB, CTSD, CAPN2, KLK1 und TGFB1 verwendete Primer und PCR-Bedingungen

Gene Primer sequences (5´ —> 3´) PCR conditions Annealing temperature, °C/
 f=forward, r=reverse  elongation time, s/ 
   number of cycles

CTSB GGA ACA CTG ATT GGG GTG AC (f)1 Standard PCR conditions6 58 / 45 / 35
 ATT CCA CAG TGG TCC TGT CC (r)1  
CTSD CTG TGA GGC TAT CGT GGA CA (f)2 Standard PCR conditions6 50 / 60 / 35
 CTC AGG CAC ACG GTC GTC (r)2 and 10 % (v/v) DMSO  
CAPN2 AGT GGG AAA CCG GCT AAA GT (f)3 Standard PCR conditions6 57 / 35 / 40
 TGC TGG AGT AAG GTC CCA AC (r)3 and 10 % (v/v) DMSO  
KLK1 CCT GTT TGA GGA CGA AGA CAC (f)4 Standard PCR conditions6,  65 / 80 / 40
 GGT GTA GAC GGA GGG CTT ATT (r)4 25 nmol MgO(Ac)2 added 
TGFB1 AGA ACT GCT GTG TTC GTC AGC TC (f)5 Standard PCR conditions6 64 / 60 / 40
 GTT GGA CAA CTG CTC CAC CTT G (r)5 and 5 % (v/v) DMSO  

1NM_174 031 (Bta), 2AF164 143 (Oar), 3XM_864 105 (Bta), 4AY290 705 (Bta), 5NM_001009400 (Oar), Bta=Bos taurus,
Oar=Ovis aries, 640-50 pmol of each primer, 30-90 ng template DNA, 1-1,75 U Taq DNA polymerase, 640-800 µM dNTPs 
in 1 fold reaction buffer supplied by the manufacturer in a total volume of 50 µl

Identified sequence variants in genes CTSB, CTSD and KLK1 were genotyped in scapie positive 
and control animals by PCR-restriction fragment length polymorphism (RFLP) analysis with 
restriction enzymes LweI, BseYI and BsmFI respectively (Table 2). The single nucleotide 
polymorphism (SNP) in TGFB1 was typed by PCR-RFLP after generation of an amplification 
created restriction site (ACRS) (HALIASSOS et al. 1989) with enzyme BseGI (Table 2). For typing 
of the SNP in the CAPN2 gene two allele specific PCRs were carried out, both containing 
the respective specific primer and the corresponding reverse primer each and additionally 
an extra forward primer to create a smaller control fragment (Table 2). As in some cases 
the allele specific PCR failed to detect the wildtype allele (G) in heterozygous animals, all 
probes assumed to be homozygous for TT were double checked by nested-PCR-RFLP with 
the enzyme MvaI (Table 2). Allele and genotype frequencies were calculated for the scrapie 
positive sheep (atypical and classical) and their healthy controls (from flocks affected by 
atypical or classical scrapie respectively) separately and compared using the chi square test 
and Fisher ś exact test (SAS v. 8.01, Institute Inc., Cary, NC, USA). Furthermore in respect to 
every SNP the Hardy-Weinberg equilibrium in the test population was estimated (HARDY 
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1908). Single nucleotide polymorphisms in exons or promoter regions of the respective 
genes were examined for a potential impact on the gene function by the use of computer 
programs MatInspector (CARTHARIUS et al. 2005), ESEfinder 3.0 (SMITH et al. 2006), and 
Sequence Manipulation Suite: CpG Islands (STOTHARD 2000), respectively.

Table 2
Methods used for genotyping of SNPs within the genes CTSB, CTSD, CAPN2, KLK1 and TGFB1
Für die Genotypisierung der SNPs in den Genen CTSB, CTSD, CAPN2, KLK1 und TGFB1 verwendete Methoden

Gene Primer sequences (5´—> 3´) Genotyping PCR conditions Ann. temp., °C/
 f=forward, r=reverse method  Elong. time, s/  
    n of cycles

CTSB GGA ACA CTG ATT GGG GTG AC (f) RFLP with Standard PCR 58 / 45 / 35
 ATT CCA CAG TGG TCC TGT CC (r) enzyme LweI conditions7 

CTSD GGA GGA CTA CAC GCT CAA GG (f) RFLP with Standard PCR 55 / 60 / 40
 CTC AGG CAC ACG GTC GTC (r) enzyme BseYI conditions7 
    

CAPN2 CCG CTT TTC CAC CGG GAT GCT CT (f)1,6 Allele specific PCR8 Special PCR PCR with
 GGT TGA GGT ACT TGA CCG CCC TCT CG (r)1  conditions9 Primer1+3: 
 GCT TTT CCA CCG GGA TGC TCG (f)2,6   72 / 60 / 45
 GGG AAG GAG GGG TCC TGG AAC AG (r)2   PCR with
 CCG CGG GAC CCG GTG AAT CAT (f)3    Primer2+3: 
    66 / 60 / 50

CAPN2 AGT GGG AAA CCG GCT AAA GT (f)4 Nested PCR-RFLP PCR No.1 with  PCR No.1: 
 TGC TGG AGT AAG GTC CCA AC (r)4 with enzyme MvaI special PCR 55.5 / 40 / 45
 GGA TTT GAG TCC CCG CTT TTC (f)5  conditions10, PCR No.2:
 GGC AGC GGG ACT GTG AGC (r)5  the amplicon was  60.5 / 35 / 45
   then included in 
   PCR No.2 with 
   special PCR 
   conditions11  

KLK1 CCA CAC ACA TCA GAG TTC ACG (f) RFLP with Standard PCR 65 / 45 / 45
 GGT GTA GAC GGA GGG CTT ATT (r) enzyme BsmFI conditions7 

TGFB1 GGA GAA AGA AAA GGA GAC GGA T (f)6 ACRS with Standard PCR 63 / 30 / 45
 CTC CCC CTG TCT TAT CTC ATT C (r) enzyme BseGI conditions7, 
   15 nmol MgO(Ac)2 
   added 

Ann. temp.=Annealing temperature, Elong. t.=Elongation time, No. cycles=Number of cycles, 1specific forward 
primer (f) used for amplification of the allele T and corresponding reverse primer (r), 2specific forward primer (f) used 
for amplification of the allele G and corresponding reverse primer (r), 3forward primer (f) set in both reactions to 
create a control fragment with the respective reverse primer, 4outer primer, 5inner primer, 6base pair mismatches are 
indicated by lower case letters, 715 pmol of each primer, 7 -10 ng template DNA, 0,3- 0,6 U Taq DNA polymerase, 640-
800 µM dNTPs in a 1 fold reaction buffer supplied by the manufacturer in a total volume of 15 µl, 8two independent 
reactions for amplification of the T allele, G allele respectively, 924 pmol of respective specific forward and 
corresponding reverse primer each, 12 pmol of extra forward primer to create control fragment, 8 ng template DNA, 
0,5 U Taq DNA polymerase, 800 µM dNTPs, 10 % (v/v) DMSO in a 1 fold reaction buffer supplied by the manufacturer in 
a total volume of 12 µl, 1010 pmol of each outer primer, 0,35 U Taq DNA polymerase, 800 µM dNTPs, 10 % (v/v) DMSO in 
a 1 fold reaction buffer in a total volume of 10 µl, 1116 pmol of each inner primer, 0,5 U Taq DNA polymerase, 800 µM 
dNTPs, 10 % (v/v) DMSO in a 1 fold reaction buffer supplied by the manufacturer in a total volume of 16 µl 
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Results and discussion
Sequence analyses led to the identification of several SNPs in the investigated genes, of 
which one per gene was used for the association analysis (Table 3).

Table 3
Genotype frequencies (%) of atypical and classical scrapie cases and control animals regarding SNPs in the 
genes CTSB, CTSD, CAPN2, KLK1 and TGFB1
Genotypfrequenzen (%) der atypischen und klassischen Scrapiefälle und der Kontrolltiere im Bezug auf die SNPs in 
den Genen CTSB, CTSD, CAPN2, KLK1 und TGFB1

Gene and position1  GenBank  Genotype  Atypical scrapie Classical scrapie
of SNP  Acc. No.  cases controls cases controls

CTSB GQ355936 CC 60.6 62.1 67.0 67.4
Intron9 (403)  CT 31.8 32.5 32.0 29.0
C>T  TT 7.6 5.4 1.0 3.6

CTSD GQ355937 CC 31.3 33.5 20.2 31.4
Exon9 (385)  CT 46.3 45.9 54.5 44.0
C>T  TT 22.4 20.6 25.3 24.6

CAPN2 GQ355935 GG 55.9 51.3 50.5 55.4
5´-UTR (26)  GT 36.8 38.8 38.4 36.7
G>T  TT 7.3 9.9 11.1 7.9

KLK1 GQ355938 CC 60.9 61.6 69.7 79.1
Intron4 (889)  CT 34.8 31.7 27.3 20.1
C>T  TT 4.3 6.7 3.0 0.8

TGFB1 GQ355939 GG 88.2 81.8 94.2 96.3
Intron6 (225) G>T  GT 10.3 17.2 5.8 3.7
  TT 1.5 1.0 0.0 0.0
1position in respective GenBank sequence

At position 12 of CTSD exon IX a silent mutation (C>T) was detected. In case of the C allele we 
detected a potential exon splicing enhancer (ESE) (GGC CGG G) at this location. The location 
near the exon-intron boundary is typical for exonic splice control elements (MAJEWSKI and 
OTT 2002). In case of the T allele the score for this ESE drops below the threshold. As ESEs are of 
great importance for correct splicing, it is possible that the destruction of the respective ESE 
causes an exon skipping of exon IX as it has been described for a number of silent mutations 
in other genes before (CARTEGNI et al. 2002). 

In ovine CAPN2 the promoter and part of the first exon were investigated. Computer 
analysis revealed that the whole region spanned a CpG island including two G/C boxes. In 
the promoter region at position 191 in front of exon I a single nucleotide polymorphism 
(G>T) was detected. In case of the G allele a potential binding site (TGC CCG GGG TGC T) 
for a transcription repressor was identified, which could not be detected for the mutated 
T allele as the conserved »GGGG« core is essential for it’s binding activity (BRESLIN et al. 
2002). At position 391 of CTSB intron 9, position 392 of KLK1 intron 4 and position 206 in front 
of exon VII in intron 6, respectively, a single nucleotide polymorphism (C>T), (C>T), (G>T), 
respectively, was detected. No evidence could be found for any of these mutations to have 
a potential impact on the gene function. Significant differences between scrapie positive 
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sheep and control animals were identified neither in allele nor in genotype frequencies for 
any of the investigated genes. 

In contrast to the genes analyzed above, significant differences had been observed 
between PRNP genotype frequencies of the classical and of the atypical scrapie positive 
sheep and their healthy flock mates in a previous study (LÜHKEN et al. 2007), which included 
the samples of the present study. German sheep breeds differ in their PRNP genotype 
frequencies (DRöGEMÜLLER et al. 2001); thus the breed was considered when samples from 
healthy flock mates were selected in order to minimize stratification effects. However, any 
of the five analyzed genes is located on chromosome 13, where PRNP has been mapped 
(LÜHKEN et al. 2006). Therefore no genetic linkage between PRNP and the analyzed genes 
could have affected the results of the association analysis. In fact, the population was found 
to be completely in Hardy Weinberg equilibrium for all analyzed SNPs. 

In conclusion, no evidence for an association of SNPs in the genes CTSB, CTSD, CAPN2, KLK1 
and TGFB1 with scrapie susceptibility could be detected. Further studies may show if other 
sequence variants in these candidate genes have an impact on the trait under study.
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