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Abstract 
Using statistical modeling to determine the structure of expectation and covariance 
employed during analysis is a common feature of analytical research. This paper describes 
the necessary methodology for, and illustrates those techniques that are of special 
importance in, practical modeling and evaluation scenarios (likelihood ratio test, 
analytical criteria, residual analysis). Our approach is demonstrated upon a population 
comparison, taken on various measurement dates, that focuses on a wild population and 
a laboratory population of Golden Hamsters. The selected example is particularly suited 
due to the fact that – aside from the actual growth function of interest – additional fixed 
(e.g. effect of different mating periods, litter size) and random factors (e.g. maternal 
environment, repeated performances per animal) must be considered. The modeling 
shows significant efficiency regarding the improvement of the analytical criteria. The 
recommended evaluation model leads to a very close match of the observed ordinary 
least square residuals and of the variance and covariance functions, respectively, that 
have been derived from the estimated covariance structure. 

Keywords: repeated measures, covariance structures, model selection 

Zusammenfassung 
Statistische Modellbildung für Wachstumsdaten in gemischten linearen  
Modellen – dargestellt am Beispiel eines Populationsvergleichs beim  
Goldhamster 

Die statistische Modellbildung im Sinne einer Bestimmung der bei der Auswertung zu 
verwendenden Erwartungswert- und Kovarianzstruktur ist eine mit der Datenauswertung 
häufig einhergehende Aufgabenstellung. Der vorliegende Beitrag beschreibt die dazu 
erforderliche Vorgehensweise und stellt praktisch besonders bedeutsame Hilfsmittel zur 
Modellbildung und -überprüfung dar (Likelihood Ratio Test, analytische Kriterien, 
Residuenanalyse). Die Vorgehensweise wird am Beispiel eines Populationsvergleichs für 
die Körpermasse einer Wild- und Laborpopulation des Goldhamsters zu verschiedenen 
Messterminen demonstriert. Das gewählte Beispiel ist dahingehend besonders geeignet, 
da neben der Formulierung der eigentlich interessierenden Wachstumsfunktion weitere 
feste (Einfluss von verschiedenen Anpaarungsperioden, Wurfgröße) und zufällige 
Einflussfaktoren (maternale Umwelt, wiederholte Leistungen je Tier) zu beachten sind. 
Die Modellbildung zeigt eine hohe Wirksamkeit bezüglich der Verbesserung der 
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analytischen Kriterien. Das empfohlene Auswertungsmodell führt zu einer sehr guten 
Übereinstimmung der beobachteten Ordinary Least Square Residuen und der Varianz- 
bzw. Kovarianzfunktion, ermittelt aus der geschätzten Kovarianzstruktur. 

Schlüsselwörter: wiederholte Beobachtungen, Kovarianzstrukturen, Modellwahl 

Introduction 
Analyzing growth curves is a very common task in biological research. In general, this 
analysis comprises the acquisition of data for the same object (plant, animal) over a 
certain period. This leads to repeated observations per object and thus results in 
accordingly complex covariance structures between these observations (LITTELL et al. 
1998, MIELENZ & SCHUELER 2007b). The separate analysis per measurement date 
circumvents this dependency structure, but from a scientific perspective, it must be 
considered suboptimal, since it does not allow any statements on the characteristics of 
the growth curves. 
 Often, however, the matter of interest is not only the growth curve itself but also the 
comparison of curves for two or more analysis classes, such as populations. In this case, 
the respective differences between the growth curves will have to be estimated and 
statements on the significance of these differences given. 
 This briefly outlined task leads us to a linear model with fixed effects – such as the 
selected populations to be analyzed, and random effects – such as selected animals with 
their repeated measurements as representatives of the chosen population to be 
examined. The resulting linear mixed model is not given. On the contrary, from a 
statistical point of view, the challenge lies in determining an expectation and covariance 
structure that corresponds to the data. Developing the expectation structure is required 
to determine unbiased estimations of the desired treatment effects and their differences. 
Often, additional fixed noise factors may be significant and must not be neglected. In 
order to guarantee unbiased results for the statistical tests to be performed, the 
covariance structure is required. 
 Thus, a variety of analyses initially demand statistical modeling to determine the 
expectation and covariance structure. This paper aims to describe the individual steps 
involved in the statistical modeling for growth data and a subsequent population 
comparison. In order to accomplish this, we make use of body mass data on both a wild 
population and a laboratory population of Golden Hamsters (Mesocricetus auratus). The 
data were gathered in intervals of 7 days between the hamsters’ 28th and 70th day of life.  
 For more than 75 years, Golden Hamsters have been kept both in private homes and 
in research labs. In 1930, a sibling mating constituted the beginning of their history as 
pets cared for by humans (GATTERMANN 2000). In the study at hand, representatives 
from this population are compared with the offspring of wild hamsters from 1998 
(GATTERMANN 2000). The population differences expected due to their different 
backgrounds have been proven, for example, in their behavior, reproduction rates, body 
mass trends, organ mass, and blood characteristics (FRITZSCHE et al. 2000, GATTERMANN 
2000, GATTERMANN et al. 2002, FRITZSCHE et al. 2006, KRAUSE 2008). The decreased 
genetic variability of the lab population has also been documented (FRITZSCHE et al. 
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2000, NEUMANN et al. 2005, KRAUSE 2008). Research also exists on the description of 
growth curves for Golden Hamsters, but this research does not describe the statistical 
modeling with sufficient precision (GATTERMANN et al. 2002, KRAUSE 2008).  
 In this paper, the body masses per animal are repeatedly measured and will be 
analyzed simultaneously. Moreover, a suitable model-fitting strategy will be illustrated 
with the example of these Golden Hamster data. 
 We address the challenges described above with the help of the SAS software 
package, though other software tools such as R may also be used for the represented 
approach. However, we prefer SAS, since the Kenward-Roger method (KENWARD and 
ROGER 1997) used with SAS represents a very powerful approximation of the degrees of 
freedom for hypothesis testing in linear mixed models, and can be used with a diverse 
range of experiment set-ups. 

Approach for the model selection 
As indicated in the introduction, the model selection for mixed linear models comprises 
the selection of both the expectation structure for the fixed effects and the covariance 
structure for the random effects. Depending on the problem to be tackled, the number of 
the respective suitable variations may be rather large for both the expectation and the 
covariance structure; hence, the number of possible combinations can be large as well. 
For this reason, a multi-step approach (WOLFINGER 1993), together with the combined 
optimization of expectation and covariance structure (NGO & BRAND 1997), is suggested. 
We therefore employ the following steps in this paper: 

1. Provisional selection of the expectation structure for assumed residual effects of 
diagonal structure and homogeneous variance estimated with the ordinary least 
square method (OLS) (SEARLE 1971).  

2. Selection of the covariance structure while using the expectation structure from 
the results of the first step. 

3. Final definition of the expectation structure via significance testing of noise 
factors while using the optimized covariance structure. 

In step 1, our approach allows us to use the OLS residuals for every analyzed model to 
check for any bias, which is particularly convenient for repeated observations. 
Furthermore, the distribution of the residuals over time allows information on variance 
heterogeneity over time. Finally, we can use the variance function to compare the 
covariance structure observed for the residuals with the estimated structure derived at 
the end of step 2. In so doing, the estimated covariance structure should basically map 
the distribution of the residuals. 
 In order to implement this approach, we have chosen an inverted sequence of the 
steps proposed by WOLFINGER (1993), who initially performs an optimization step for the 
covariance structure. When determining the provisional expectation structure, it is even 
recommended to employ overparameterized models where possible. That is to say, aside 
from all treatment factors, all potential noise factors should be included in the modeling. 
This ensures that the OLS method delivers consistent estimators for the fixed effects. 
Once the optimized covariance structure has been obtained, the third step may include 
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testing the significance of the levels of fixed noise factors or of regression coefficients 
belonging to the independent variables (derived from the continuous noise factors); this 
can be done, for example, with the help of the approximate t- or F-test, respectively 
(GIESBRECHT & BURNS 1985, FAI & CORNELIUS 1996, KENWARD & ROGER 1997, SPILKE et 
al. 2005). It is quite possible that the fixed noise factors identified as significant during 
the first step do not expose any significance at all when used with the optimized 
covariance structure. In this case, the third step will require yet another analysis of the 
residuals. This is to avoid the accidental exclusion of significant noise factors in the sense 
of statistical type-II errors, which is necessary because the expectation and covariance 
structures are not independent of one another. Additionally, the normal distribution of 
the residuals and the random model effects may be tested at the end, for example, with 
the help of quantile-quantile plots. 

Model selection methods 
In the subsequent sections, we describe the use of the likelihood-ratio test, analytical 
criteria and residual analysis for the model selection. 

Likelihood-ratio test (LRT) 

The likelihood-ratio test allows the comparison of the model’s fit, provided that one of 
the models is hierarchically subordinated to the other. This is the case if one model can be 
seen as a specialization of a more general model due to certain model effects having 
been fixed. The LRT then results from: 

2
ˆ( ) ˆ ˆLRT 2log 2log ( ) 2log ( ) ~ ( )ˆ( )

s
s g

g

L
L L FG

L
θ θ θ χ
θ

⎛ ⎞
= − = − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (1) 

Given certain regularity conditions, the LRT testing statistic asymptotically follows an 2χ  
distribution, with the degrees of freedom resulting from the number of restrictions that 
are necessary to transform the general model g into the special model s (FAHRMEIER & 
HAMERLE 1984, GREENE 2003). The model fit of the general model, when compared to 
the special model, is considered better if LRT > 2 (1 , )FGχ α− , with α≤0.05 in most cases. 
 If two models are compared regarding the expectation structure, the likelihood 
functions are determined and maximized with the help of the classic Maximum 
Likelihood (ML) method. If the model comparison focuses on the covariance structure for 
a constant expectation structure, the likelihoods are employed via the Restricted 
Maximum Likelihood (REML) method (WOLFINGER 1993, NGO & BRAND 1997, MIELENZ et 
al. 2007a). 
 The LRT based on the quotient of restricted likelihood functions is often referred to as 
RLRT in related works. Two of the classic requirements for the LRT are that the test has to 
be performed based on independent random variables y1 to yn, and that the parameters 
for the null hypothesis do not lie on the boundary of the parameter space. In the linear 
mixed model, for example, these requirements are not met when testing hypotheses with 
the form of 2

0 : 0uH σ = against 2
1 : 0uH σ > . Therefore, there are various research efforts that 

derive the exact asymptotic distribution of the LRT or RLRT, respectively, for the special 
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cases of linear mixed models and that analyze the derived results with the help of 
simulation studies (SELF & LIANG 1987, CRAINICEANU & RUPPERT 2004a, CRAINICEANU & 
RUPPERT 2004b). The authors of this paper are not aware of any research study that 
derives the asymptotic distributions of the RLRT without any restrictions regarding the 
complexity of the covariance structure in the linear mixed model. Thus, this paper 
assumes the classic asymptotic 2χ  distribution when testing hypotheses on the covariance 
structure with the help of the RLRT. 

Information Criteria 

For model comparisons without requiring hierarchical models for the models to be 
analyzed, there are a number of analytical criteria. Often, Akaike’s information criteria 
(AKAIKE 1969, 1973, 1974) and their modifications of HURVICH and TSAI (1989) as well as 
the criterion of SCHWARZ (1978) are used. Calculating these criteria for comparing 
expectation structures using the ML method is carried out as follows: 

ML

2 ( )
AICC 2log

( ) 1
X

X

n p q
L

n p q
+= − +

− + −
 and MLBIC 2log ( )log( )XL p q n= − + +  (2) 

Here, pX denotes the rank of the design matrix X of the fixed effects, q is the number of 
variance components to be estimated, and n stands either for the number of observations 
with only one observation per object or for the number of objects with multiple 
observations per object, respectively. The comparison of the covariance structure for 
identical expectation structures is realized with the help of the REML method:  

REML

2
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− −
 and REMLBIC 2log log( )R L q n= − +  (3) 

Thus, the calculation formulas of the information criteria are given in such a way that the 
model with the lower value for the information criterion is preferred. 

Residual analysis for testing modeling results 

An important tool for testing the modeling results is given by the residual analysis 
(BELSLEY et al. 1980, COOK et al. 1982, NOBRE & SINGER 2007). With this tool, the residuals 
derived from an ordinary-least-square analysis may be used for testing both the 
expectation and the covariance structure. For observations made over a certain time 
period, the residual analysis may be employed particularly efficiently, since in this case, 
each point in time has its own estimated values for expectation and variance, as well as 
residuals for verifying these values. 
 The purpose of verifying the expectation structure is to detect any potentially existing 
systematic bias of the residuals caused by the non-consideration of fixed effects. If all 
significant fixed effects have been considered, the mean of the residuals per measurement 
date should be approximately zero without any changes over time. This may be re-checked 
by using a locally adjusted regression (CLEVELAND et al. 1988, CLEVELAND et al. 1991). 
 The variability differences of the residuals over time may indicate whether or not a 
heterogeneous variance over time needs to be considered. Furthermore, the OLS 
residuals serve to check the covariance structure for repeated observations per object. 
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Thus, the estimated covariance matrix derived from the observed residuals may be 
opposed to the estimated model covariance matrix. This can be illustrated by representing 
the variance function or covariance function or correlations (see »Statistical model 
development«), respectively, between the residuals within one object over time.  
 If there are few observations per day of life, however, the squared OLS residuals are 
also plotted against the time. Then, a smoothened mean trend of the squared residuals 
may serve to check the variance function over the measurement period. 

Material 
The data available for our investigation refers to a laboratory population and a wild 
population of Golden Hamsters (KRAUSE 2008). In total, data from 626 animals from 140 
litters (lab population: 57, wild population: 83) taken by 7 measurements are available for 
analysis. Both the generation of the experiment animals and the testing took place in 7 
successive periods (mating periods over a period of 2 years, short periods). It can be 
expected that these time periods are connected to effects on the body mass.  
 
Table 1 
Statistics for the body mass (g), separated by population and sex 
Statistische Maßzahlen für die Körpermasse (g), getrennt nach Populationen und Geschlecht 

Day of life Population Sex n 
28 35 42 49 56 63 70 

male 155
58.5 (7.9)*
[40; 77]**

71.5 (8.9)
[49; 93]

81.7 (8.6)
[61; 105]

87.3 (9.5)
[64; 113]

91.5 (9.5)
[66; 120]

94.3 (9.9) 
[68; 124] 

97.9 (10.1) 
[72; 128] Lab 

female 159
57.1 (8.0)
[39; 77] 

71.1 (8.5)
[49; 95] 

80.2 (8.5)
[61; 102] 

85.7 (9.2)
[64; 111] 

89.7 (9.4)
[70; 117] 

92.0 (9.6) 
[68; 119] 

96.2 (9.5) 
[76; 122] 

male 154 65.0 (8.2)
[43; 84] 

71.3 (10.6)
[48; 91] 

77.3 (11.7)
[51; 106] 

81.0 (12.2)
[51; 110] 

83.4 (12.4)
[55; 111] 

85.7 (12.3) 
[58; 114] 

88.0 (12.2) 
[61; 121] 

Wild 
female 158

60.6 (7.3)
[42; 77] 

65.6 (10.3)
[42; 89] 

71.6 (11.7)
[45; 97] 

75.4 (12.6)
[47; 111] 

78.0 (13.0)
[47; 116] 

80.5 (13.5) 
[49; 120] 

84.6 (13.7) 
[52; 128] 

* ȳ (SD),  ** [ymin ; ymax] 

As expected, the statistical measures shown in Table 1 expose significant differences 
between both sexes and populations. Furthermore, there is a considerable increase in 
variability over time. These results have to be considered when modeling the expectation 
structure. 

Statistical model development 

Modeling the expectation structure (step 1) 

The foundation for modeling growth curves was provided by an estimation of the curves 
with the help of a locally adjusted regression (CLEVELAND et al. 1988, CLEVELAND et al. 
1991) using the SAS procedure LOESS. The results of such a non-parametric regression 
allow the justified derivation of a functional approach for the design of the expectation 
structure. The results in Figure 1 are shown for the male animals of the lab population. 
They show a non-linear curve, and for the given observation period, a squared functional 
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approach is most likely sufficient and may yield a good fit to the observations. 
Furthermore, Figure 1 illustrates an increase in variability for older animals – as the results 
in Table 1 already suggested. The results for the female lab animals and those for both 
sexes of the wild population are similar and thus omitted here. However, the comparison 
of the locally adjusted regressions also leads to the necessity of modeling population- 
and sex-specific functions, which was already indicated by the results in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 
Locally adjusted regression (smoothing parameter=0.5) and observations of the body mass for male lab animals 
Lokal angepasste Regression (Glättungsparameter=0,5) und Beobachtungen der Körpermasse der männlichen 
Tiere der Laborpopulation  

The results of modeling the expectation structure – derived particularly from Figure 1 – 
are presented in the next table. It must be stressed that the initial assumptions made 
here only focus on the expectation structure, not on any interval and significance issues; 
examining these will only be possible after optimizing the covariance structure. Thus, the 
models shown in Table 2 correspond to an OLS analysis. 
 According to the data structure and the abovementioned statements, the expectation 
value for the body mass of an animal with sex j from population i at time t is to be 
modeled for the whole observation period. While doing so, the period‹s impact k, as well 
as the litter size of animal l‹s litter of origin will have to be considered as well. For this 
purpose, the regression coefficient of the body mass is mapped to the litter size 
depending on the time of measurement. This considers that the impact of the size of the 
litter of origin decreases in importance as the animal‹s age increases. That is to say, with 
there being 7 measurement dates, 7 regression coefficients will be estimated.  
 When considering all influential factors, the expectation value of yijkl (t) has the 
following form for the model with exclusively fixed regression coefficients (fixed 
regression model FRM):  
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Table 2 
Estimated residual variance ( 2

eσ̂ ), log-likelihood function multiplied by −2(−2logL), results of the LRT, 
and differences for the information criteria AICC and BIC 
Geschätzte Restvarianz ( 2

eσ̂ ), mit −2 multiplizierte Log-Likelihoodfunktion(−2logL), Ergebnisse des LRT 
sowie Differenzen für die Informationskriterien AICC und BIC 

Nr.  Model for the fixed effects 
p 

(pX) 
2
eσ̂  −2logL 

Δ −2logL
(p-value) 

df Δ AICC Δ BIC 

M1 0 0 ( )ij kb x t periode⋅ +  11 
(10) 

204.0 35 738.9 
3 615.5 

(<0.001)
15 3 583.2 3 481.3 

M2 0 0 1 1( ) ( )ij ij kb x t b x t periode⋅ + ⋅ +  15 
(14) 100.6 32 641.4 

518 
(<0.001) 9 493.8 417.4 

M3 0 0 1 1 2 2( ) ( ) ( )ij ij ij kb x t b x t b x t periode⋅ + ⋅ + ⋅ +  19 
(18) 93.2 32 309.4 

186 
(<0.001) 7 169.8 118.9 

M4 0 0 1 1 2 2( ) ( ) ( )ij ij ij k t lb x t b x t b x t periode b wg⋅ + ⋅ + ⋅ + + ⋅  26 
(25) 89.4 32 123.4 0 0 0 

p number of fixed effects, pX rank of the design matrix of fixed effects, df degrees of freedom for the likelihood-
ratio test (LRT), differences of AICC or BIC compared to model M4 ( Δ AICC, Δ BIC) 

Table 2 shows four work models of increasing complexity. There, model M1 is only 
included to demonstrate the model development process. This model does not allow any 
time-dependent estimation of model effects and thus leads to a considerably worse 
model fit. According to the results from Table 2, a considerable reduction of the likelihood 
function multiplied by −2 (−2logL) and an improvement of the information criteria can 
be demonstrated in the context of the model development. The LRT for the comparison 
of the work models with the most complex model is significant in any case. That is to say, 
an increased model complexity definitely leads to a significant reduction of the (−2logL) 
values. For the analytical criteria AICC and BIC, the same curve is found. Accordingly, one 
would prefer the more complex model M4 with 26 fixed effects when using these criteria 
as well. Aside from the period effect (7 effects), this model contains the sex- and 
population-specific fit of the growth curve depending on time due to a 2nd-degree 
polynomial (4∙3 coefficients), as well as the regression of body mass to litter size for every 
measurement date (7 coefficients). 
 In SAS notation, this model leads to the subsequent representation where the option 
NOINT suppresses the estimation of a general mean independent from factor levels. The 
term pop*sex invokes the estimation of a general median specific to each population*sex 
combination. 
 
PROC MIXED METHOD=ML; 
 CLASS period pop sex day_of_life; 
 MODEL km = period pop*sex t*pop*sex tt*pop*sex litter_size*day_of_life / NOINT; 
RUN; 
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The use of model M4 leads to the residuals shown in Figure 2 both below and to their 
curve, which have been fit with non-parametric regression for smoothing parameter 0.5 
(SAS procedure LOESS). The residual analysis is based on the standardized OLS residuals. 
That is to say, the observed residuals are divided by their standard error. Further details 
on the calculation can be found in GREGOIRE et al. (1995). Here, the associated advantage 
lies in the improved comparability and comprehensibility, since the assumption of a 
normal distribution leads to all residuals being within the range of ±3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 
Locally adjusted regression (smoothing parameter=0.5) and standardized OLS-residuals for model M4 
Lokal angepasste Regression (Glättungsparameter=0.5) und standardisierte OLS-Residuen für Modell (M4) 

The above figure illustrates that there is no systematic trend for the residuals depending 
on the animals‹ age, and thus, the locally adjusted regression line does not expose any 
slope. Few standardized residuals go beyond the range of ±3. However, the figure does 
show the systematic increase for the residuals depending on the animals’ age as an 
expression of the expected age-dependent heterogeneity of the residual variance. This 
aspect has to be considered during the subsequent modeling of the covariance structure. 

Modeling of the covariance structure (step 2) 

Thus far, the model design process has assumed independent residual effects. This is not 
realistic. For the data structure at hand, two major reasons contradict this assumption: 
– The same animals were examined at various intervals. Accordingly, there are 

repeated observations per animal, and dependencies between them can be 
expected. Additionally, a time dependence is to be expected for this relation, since 
successive observations may be more similar than observations for the same animal 
with two measurement points that lie further apart. 
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– As Golden Hamsters are multiparous mammals, maternal environmental conditions 
are very important within our analysis. To a certain extent, the examined animals 
are from the same litter. Accordingly, the same litter environment leads to the 
expected higher similarities between those animals when compared to individuals 
from different litters.  

 Derived from that, the modeling of the covariance structure refers to these two 
complex causal issues while also considering the time-dependent heterogeneity of the 
residual effects, as the results presented in Figure 2 imply. Accordingly, a so-called 
random regression model (RRM) (SCHAEFFER & DEKKERS 1994, JAMROZIK & SCHAEFFER 
1997) is assumed for the dam and animal effects. That is to say, one individual regression 
function is estimated for each dam and animal. 
 In the subsequent sections, we will first describe the appropriate models for the dam 
and animal effects. Let dm = (dm0 , … , dmn)’ be the vector for the random regression 
coefficients of dam m and let ail = (ail , … , ailn)’ be the vector for the random regression 
coefficients of animal l (with dam m) from population i. Then let x = (x0 , … , xr)’ denote the 
vector for the time-dependent covariates with xr = tr for r=0, 1,…, n. When considering 
random dam and animal effects, the random regression model (RRM) associated with 
(FRM) then takes on the following form: 

(RRM)  
0 0

( ) ( )
n n

ijkml ijkl mr r ilr r ijkml
r r

y d x t a x t eμ
= =

= + ⋅ + ⋅ +∑ ∑  (5) 

Let dm and ail be multi-dimensionally normally distributed vectors that are independent 
of each other, with dm ~ N(0,Kd) and ail ~ N(0,Ka(i)). Then, the variance function for a given 
record of animal l with dam m from population i at time t has the following form: 

2 2 2
( )

2 2 2
( ) ( )

Var( ( )) ( ) ( ) ( )

with    ( ) '( ) ( );  ( ) '( ) ( )      ( ) Var( )
iml d a i e

d d a i a i e ijkml

y t t t t

t x t K x t t x t K x t and t e

= σ + σ + σ

σ = σ = σ =
 (6) 

Assuming independent residual effects, we arrive at the following representation of the 
covariance function for the days of life t1 and t2:  

1 2 1 2 ( ) 1 2

1 2 1 2 ( ) 1 2 1 ( ) 2 1 2

Cov( ( ), ( )) ( , ) ( , )

with   ( , )  '( ) ( );  ( , ) '( ) ( )       
iml iml d a i

d d a i a i

y t y t t t t t

t t x t K x t t t x t K x t for t t

= σ + σ
σ = σ = ≠

 (7) 

If we restrict the random regression model to the special case of nD = nA = 1 (i.e., only 
intercept and slope), implementing SAS within the MIXED procedure leads to the following 
additional commands: 
 
 RANDOM intercept t / SUBJECT=dam TYPE=UN; 
 RANDOM intercept t / SUBJECT=animal TYPE=UN GROUP=POP; 
 
Here, the METHOD=ML has to be replaced by METHOD=REML, the class statement has to 
be extended with the order terms »dam« and »animal«. When using TYPE=UN, matrix Kd 
contains three variance components to be estimated. The option GROUP=POP invokes 
the population-specific estimation of Ka(i). Thus, a total of 6 variance components will 
have to be estimated for animal effects. The specific regression coefficients for the factors 
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»dam« and »animal« may be considered as random deviations of the fixed regression 
coefficients in the squared approach for the expectation value according to model (FRM). 
If higher-degree polynomials are used, the simple transformation t*=t/ tmax (with tmax being 
the maximum age during the observation period) often leads to better convergence 
when optimizing the likelihood function. 
 Up to this point, the covariance structure has been modeled using the subject-specific 
components »dam« and »animal«. Further possible relations between the dams are 
neglected, since the available data set most likely does not allow a realistic estimation of 
the genetic covariances. For the residual effects, this means that there is no deviation 
from the diagonal structure; all non-diagonal elements are zero. Subsequently, this 
covariance structure is to be specified in more detail, since covariances between the 
residual effects that depend on the age differences between measurement points may be 
possible (VERBEKE et al. 1998, LESAFFRE et al. 2000). For this purpose, the residual effect 
of an animal is considered independent of its age and it is then split as follows: 
e(t)=e1(t)+e2(t). Here, e1(t) denotes the share of serial correlation between repeated 
performances of an animal; component e2(t) describes the portion that is valid independently 
and with the same variance for all residual effects. The serial correlation model has to be 
complemented with a distance function g(·). This function is chosen in such a way that all 
residual effects e1(t) of an animal have the same variance. Additionally, the correlation 
between them will always be positive and decrease monotonically with increasing 
distance between two measurement points. Let 2

eσ  be the variance of e(t). Thus, the 
variance and covariance functions of the residual effects for an animal on day of life t 
have the following form: 

2

2
1 2 1 2 1 2

Var( ( ))

Cov( ( ), ( )) (| |)              with   (0) 1
e

e

e t

e t e t g t t for t t g

= σ

= σ ⋅ − ≠ =
 (8) 

As presented above, d=|t1-t2| is the distance between two measurement points. There are 
a number of possible correlation functions, such as the spherical and the exponential 
function (SCHABENBERGER and PIERCE 2002). In the simplest case, a linear function as 
shown below may be chosen for g(·): 

LIN 1 2 1 2( ) 1 | |       with    | | 1g d t t t tρ ρ= − ⋅ − ⋅ − ≤  (9) 

The larger the parameter ρ, the stronger the decrease of function g with increasing values 
of d. The formulation of a linear correlation function in SAS can be achieved by using the 
REPEATED command:  
 
 REPEATED / SUBJECT=animal TYPE=SP(LIN) (day_of_life); 
 
The results of the model development for optimizing the covariance structure are summarized 
in Table 3. There, an expectation structure according to model M4 from Table 2 has been 
assumed for all cases. Model M5 as the starting point for the model design is a model in 
line with model M4 with independent residual effects (OLS model); however, the REML 
method is used for estimating the random model parameters. This method has been used 
for models M5-M12. 
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Models M5-M11 are considered special cases of model M12, which results from setting 
one or more random effects to zero. Accordingly, hypotheses on the boundary of the 
parameter space result from the LR test, which means that significance assumptions can 
only be made with reservations. A test according to Section »Likelihood-ratio test (LRT)«  
can be applied appropriately. The performed RLRT test shows a continuous significant 
improvement of the restricted-likelihood values, and thus, the model fit is improved 
despite an increase in the number of model parameters to be estimated, from 1 for M5, to 
11 for M12. The results – both for AICC and BIC – lead to the same conclusion, which 
strengthens reliability during model selection. 
 
Table 3 
Restricted log-likelihood multiplied by −2 (−2RlogL), results of the RLRT and differences of the information 
criteria AICC and BIC 
Mit −2 multiplizierte restricted Log-Likelihood (−2RlogL), Ergebnisse des LRT sowie Differenzen der Informations-
kriterien AICC und BIC 

Nr.  Model for the random effects q −2RlogL 
Δ −2RlogL 
(p-value) df Δ AICC Δ BIC 

M5 ijkle  1 32 212.4 
7 052 

(<0.001) 10 7 032 7 060.4 

M6 0 0 ( )m ijkld x t e⋅ +  2 31 223.8 
6 063.4 

(<0.001) 
9 6 045.4 6 071.7 

M7 0 0 0 0( ) ( )m l ijkld x t a x t e⋅ + ⋅ +  3 27 608.1 
2 447.7 

(<0.001) 
8 2 431.8 2 462.6 

M8 0 0 0 0 1 1( ) ( ) ( )m l l ijkld x t a x t a x t e⋅ + ⋅ + ⋅ +  5 25 767.2 
606.8 
(<0.001) 

6 594.9 631.6 

M9 0 0 0 0 1 1( ) ( ) ( )m il il ijkld x t a x t a x t e⋅ + ⋅ + ⋅ +  8 25 717.2 556.8 
(<0.001) 

3 550.8 596.3 

M10 0 0 0 0 1 1( ) ( ) ( ) ( )m il il ijkld x t a x t a x t e t⋅ + ⋅ + ⋅ + 9 25 211.9 
51.5 

(<0.001) 
2 47.5 96.0 

M11 
0 0 1 1

0 0 1 1

( ) ( )

 ( ) ( )
m m

il il ijkl

d x t d x t

a x t a x t e

⋅ + ⋅
+ ⋅ + ⋅ +

 10 25 670.0 
509.6 
(<0.001) 1 507.6 509.6 

M12 
0 0 1 1

0 0 1 1

( ) ( )

 ( ) ( ) ( )
m m

il il ijkl

d x t d x t

a x t a x t e t

⋅ + ⋅

+ ⋅ + ⋅ +
 11 25 160.4 0 0 0 0 

q number of variance components,  df degrees of freedom for the restricted likelihood-ratio test (RLRT), 
differences of AICC or BIC, respectively, compared to model M12 ( Δ AICC, Δ BIC); in M5 to M12 the following 
always applies  

0 0 1 1 2 2( ) ( ) ( ) ( ) seasonijkl ij ij ij k t lE y b x t b x t b x t b wg= ⋅ + ⋅ + ⋅ + + ⋅  (10) 

At the end of the model selection process, this results in a linear random-regression 
approach for modeling the dam and animal effects with a 2×2 covariance matrix each 
when modeling animal effects in a population-specific way. Since the animal-specific 
regression coefficients additionally depend on the population, it is necessary to estimate 
a total of three two-dimensional covariance matrices. Furthermore, the consideration of a 
serial correlation of repeated observations for one and the same animal is required. For 
this purpose, a linear serial correlation model is quite suitable.  
 Testing models with a squared component for the dam and animal effects did not 
lead to any convergence, which is understandable given the rather low number of 
independent objects (dams and animals, respectively) used with these highly complex 
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models. Also, the use of additional functional approaches, such as the exponential, the 
spherical, or the Gaussian approach for modeling the serial correlation did not result in 
any convergence when optimizing the restricted likelihood function. Thus, these models 
were discarded. In SAS notation, the selected model for the random effects can be 
summarized as follows: 
 
 RANDOM intercept t / SUBJECT=dam TYPE=UN; 
 RANDOM intercept t / SUBJECT=animal TYPE=UN GROUP=POP; 
 REPEATED / SUBJECT=animal TYPE=SP(LIN) (day_of_life); 
 
The estimated values of the covariance components and of the correlation parameter 
resulting from the use of this model are summarized in Table 4. 
 When using the OLS residual analysis, the result is a fundamental and basically 
assumption-free option for confirming the results for the selection of the covariance 
structure with analytical criteria, for additionally testing the »correctness« of the proposed 
model, and for thereby increasing reliability during the model selection process. 
 
Table 4: 
Estimations of covariances of random regression coefficients (Kd: dam, Ka: animal) and of serial 
correlation parameters (gLIN: linear) for model M12 
Geschätzte Kovarianzen der zufälligen Regressionskoeffiziente (Kd: Mutter, Ka: Tier) und Schätzwerte der 
seriellen Korrelation (gLIN: linear) für Modell M12 

Animal (Ka) Dam (Kd) 
Labpopulation Wildpopulation 

gLIN 

41.04 −0.4189 11.46 −0.3236 48.96 −0.02091 ˆ 0.08994ρ =  

−0.4189 0.01171 −0.3236 0.02091 −0.02091 0.04083 2 11.67eσ =  
 
Per population and sex, at least 154 observations were available from a total of 7 
measurement points (from the 28th to the 70th day of life in 7-day intervals). Therefore, it 
was possible, for all analyzed days of life, to estimate the standard deviations for the 
residuals and the correlations between the residuals on the various analyzed days of life. 
Figure 3 below shows the estimated standard deviations of the residuals within one 
population and sex when using OLS. There, significant differences arise between the 
populations, but differences between the sexes remain low. Despite a good system of 
mapping the increase in variance with increasing age, the variance function can only 
insufficiently model the curve of the residuals when applying population-independent 
modeling of the covariance structure according to model M8. This works much more 
efficiently when modeling random population-specific regression coefficients and 
graphically shows the related model differences, since they could have been already 
derived from the evaluation criteria from Table 3. 
 Another challenge in the context of residual analysis is found in testing the correlation 
structure of the residuals. For the example of the lab population, Table 5 shows the 
correlations resulting from the OLS residuals (model M4) and the use of the estimated 
model parameters for model M12; the correlations exhibit a very good match. The 
maximum deviation between observed and estimated correlation is 0.14 for the lab 
population and 0.10 for the wild population (which has been omitted here due to space 
restrictions). The mean for the deviations is 0.01 for the lab population, and 0.03 for the 
wild population. 
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Figure 3 
Function of the standard deviation estimated with OLS residuals and with models M8 and M12 from Table 3 
Funktion der Standardabeichungen, geschätzt mit OLS-Residuen und mit den Modellen (M8) und (M12) aus 
Tabelle 3 
 
Table 5 
Product-moment correlations of the residuals within »animal« between the days of life (above the 
diagonal) and the correlation determined from the estimated model parameters (below the diagonal) 
for the lab population 
Produkt-Moment-Korrelationen der Residuen innerhalb Tier zwischen den Lebenstagen (oberhalb der Diagonale) 
und aus den geschätzten Modellparametern ermittelte Korrelation (unterhalb der Diagonale) für die 
Laborpopulation) 

Day of life 28 35 42 49 56 63 70 
28  0.78 0.67 0.60 0.51 0.49 0.44 
35 0.84  0.88 0.81 0.75 0.71 0.63 
42 0.73 0.86  0.91 0.88 0.84 0.78 
49 0.69 0.76 0.88  0.92 0.89 0.84 
56 0.65 0.74 0.80 0.90  0.97 0.92 
63 0.61 0.72 0.79 0.84 0.92  0.95 
70 0.57 0.69 0.77 0.83 0.87 0.93  
 
If a mean correlation is formed by summarizing correlations with identical temporal 
distance (7, 14, …, 42), the result is a correlation function that depends on distance. If the 
correlations are ordered by distance, the curves shown in Figure 4 will emerge.  
 We can derive a very good match of the correlations from Figure 4, obtained from the 
OLS residuals (model M4) and model M12. There, the match for smaller distances is better 
than it is for larger temporal differences. For this result, however, it must be noted that 
fewer values are available for the mean calculation for larger distances, and hence the 
estimation is less precise. For comparison purposes, the results from model M10 are listed 
as well. Both models only differ in one linear component in the random-regression 
approach for the dam effects and the resulting possible consideration of temporal effects 
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in model M12. As Figure 4 illustrates, this additional effect is necessary in order to arrive 
at a satisfactory mapping of the correlation structure for the residuals.  
 Based on the graphically presented results in Figures 3 and 4, the model selection 
could be confirmed with the help of AICC/ BIC and RLRT. The variance and correlation 
functions of model M12 adequately reflect the results of the OLS residual analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 
Mean correlation between repeated observations per animal as a function of the tem-poral distance 
between the examined days of life estimated with OLS residuals and models M10 and M12 from Table 3 
Mittlere Korrelationen zwischen wiederholten Beobachtungen pro Tier als Funktion des zeitlichen Abstandes 
zwischen den untersuchten Lebenstagen, geschätzt mit OLS-Residuen und den Modellen (M10) und (M12) 
aus Tabelle 3 

Testing the expectation structure (step 3) 
The use of the expectation structure defined in Section 4, as well as the achievements 
from Section 5 on the covariance structure, lead to the following table with results of the 
significance check using the F-test while applying an approximation of the degrees of 
freedom from KENWARD and ROGER (1997).  
Thus, when considering the results from Table 6, we can also assume a significant 
influence from the noise factors »period« and »litter_size*day_of_life.« The model design 
of the fixed effects according to Section »Material« is confirmed.  
 In linear mixed models, marginal and conditional residuals can be distinguished 
(SCHABENBERGER 2004). A conditional residual is the difference between the observed 
data and the predicted values of the observations. Analysis of the conditional residuals 
valid for model M12 leads to the results presented in Figures 5 and 6. Therefore, we can 
also assume an efficient fit of the selected analysis model to the presumed normal 
distribution. Only the respective tails of the distribution show clearly visible deviations 
for a comparatively small number of observations (Figures 5 and 6). 
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Figure 5 
Histogram of the conditional residuals of model M12 
Histogramm der bedingten Residuen von Modell M12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 
Representation of the theoretical quantiles of the normal distribution and the observed quantiles for 
the conditional residuals from model M12 
Darstellung der theoretischen Quantile der Normalverteilung und der beobachteten Quantile für die 
bedingten Residuen aus Modell M12 
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The same statements can be made for the random effects for dams and animals, which 
have been omitted here due to space restrictions. 
 
Table 6 
Results of the significance test (Pr>F) of fixed effects (F-test) for model M12 (degrees of freedom 
approximation according to KENWARD and ROGER [1997]) 
Ergebnisse der Signifikanzprüfung (Pr>F) der festen Effekte (F-Test) für Modell M12 (Approximation des 
Freiheitsgrades nach KENWARD und ROGER [1997]) 

Effect Df (numerator) Df (denominator) F-Value Pr>F 
period 6 125 8.85 <0.001 
pop∙sex 3 1 385 88.6 <0.001 
t∙pop∙sex 4 2 400 134.01 <0.001 
tt∙pop∙sex 4 2 200 93.11 <0.001 
litter size∙day of life 7 746 46.73 <0.001 

Illustration of the growth curves and testing of differences  
Based on the developed model described in the previous sections, an estimation of the 
growth curves, their differences and associated confidence intervals may be performed.  
The resulting curves are shown in Figures 7 and 8 separately for male and female animals. 
The curves exhibit different growth dynamics between the populations but also between 
sexes. The represented confidence intervals provide an impression of the estimations‹ 
precision. The different estimation values for the covariances of the animal effects 
between the populations are clearly reflected in the confidence intervals, whereas the 
confidence intervals for the animals of the wild population are much broader.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 
Estimated growth curves and their confidence intervals for the lab and the wild population (P=0.95) for 
the male animals 
Geschätzte Wachstumskurven und deren Konfidenzintervalle der Labor- und Wildpopulation (P=0,95) für die 
männlichen Tiere 
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Figure 8 
Estimated growth curves and their confidence intervals for the lab and the wild population (P=0.95) for 
the female animals 
Geschätzte Wachstumskurven und deren Konfidenzintervalle der Labor- und Wildpopulation (P=0.95) für die 
weiblichen Tiere ) 
 
Furthermore, the differences in the growth curves and the associated confidence 
intervals can be determined for every day of the animals’ lives using the parameter 
estimations (Figures 9 and 10). These values can immediately be employed for a significance 
comparison of the growth curves. Interval borders that do not include zero show a 
significant difference, with a statistical type-I error of 0.05. This test result corresponds to 
that of a t-test for comparing population means for any given day of life t. However, the 
curves describe the population difference in much more detail than do multiple mean 
comparisons for different days of life t. For example, it may be derived from the curves 
that the population differences are not constant during the growth phase but are instead 
subject to distinct temporal dynamics. For the female animals, a significantly higher body 
mass in the lab population can already be found on the 31st day of life; for male animals, 
this does not happen before the 34th day of life. Further, a different maximum difference 
between the female animals (58th day of life) and the male animals (64th day of life) can 
be illustrated with the curves. 
 Differences in the speed of growth between the two hamster populations can be 
explained by their different cultural history. The lab population was founded in 1930 by 
only 2 animals (GATTERMANN 2000), which resulted in a highly restricted genetic pool that 
materialized as a founding effect. Aside from this random factor, which might have led to a 
population of quickly growing animals, the intentional breeding of quickly growing 
animals cannot be ruled out completely. For example, KRAUSE (2008) showed that there 
were no differences in body mass between the lab and the wild Golden Hamsters on the  
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Figure 9 
Estimated differences of the growth curves and confidence interval of the differences between the lab 
and the wild population (P=0.95) for the male animals 
Geschätzte Differenzen der Wachstumskurven und Konfidenzintervall der Differenzen zwischen der Labor- 
und Wildpopulation (P=0,95) für die männlichen Tiere ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 
Estimated differences of the growth curves and confidence interval of the differences between the lab 
and the wild population (P=0.95) for the female animals  
Geschätzte Differenzen der Wachstumskurven und Konfidenzintervall der Differenzen zwischen der Labor- 
und Wildpopulation (P=0.95) für die männlichen Tiere ) 
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first day of life. The fast increase in mass of the lab animals might have been reached by a 
selection favoring high body mass after the end of the suckling period. Research reports by 
BACHMANOV et al. (2002), ADEOGUN and ADEOYE (2004), AKANNO and IBE (2005), GAYA et 
al. (2006) and KLINGT et al. (2006) show that the attribute body mass possesses high 
heritability and thus can be influenced rather efficiently by targeted selections.  
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