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Abstract 
The average daily gains of 6,420 Czech Pied bulls (dual-purpose, Simmental type) from 7 breeding stations were 
analyzed using single-trait animal models, a multi-trait animal model and random regression models. The effects 
of station, year and season were taken into account by creating herd-year-season classes (HYS) with the season 
being defined as a 3-month class starting with December. Legendre polynomials of the 1st to the 4th degree were 
used to describe the daily gains within the HYS classes as well as to model bull-specific gain curves. The 
comparison of the h2-values estimated with single-trait models and those gained with a multi-trait model returned 
only insignificant differences. The comparison of genetic parameters based on the multi-trait model to those 
from different random regression models shows that polynomials of at least the 2nd degree are to be used for the 
genetic analysis of daily gains. 
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Zusammenfassung 
Titel der Arbeit: Schätzung von genetischen Parametern für die tägliche Zunahme von Bullen mit 
Mehrmerkmals- und Random-Regression Modellen 
Die durchschnittlichen täglichen Zunahmen von 6420 Fleckvieh Bullen aus 7 Zuchtstationen wurden mit Hilfe 
von Einmerkmals-Tiermodellen, einem Mehrmerkmals-Tiermodell  und mit Random-Regression Modellen 
ausgewertet. Die Effekte von Station, Jahr und Saison wurden durch Bildung von Herden*Jahr*Saison-Klassen 
(HYS) berücksichtigt, wobei die Saison als Dreimonatsklasse beginnend mit Dezember definiert wurde. Zur 
Beschreibung der täglichen Zunahmen innerhalb der HYS-Klassen als auch zur Abbildung tierspezifischer 
Zunahmekurven wurden Legendre Polynome 1. bis 4. Ordnung verwendet. Zwischen den h2-Werten geschätzt 
mit Einmerkmalsmodellen und jenen geschätzt mit einem Mehrmerkmalsmodell wurden nur unerhebliche 
Unterschiede gefunden. Ein Vergleich der genetischen Parameter basierend auf dem Mehrmerkmalsmodell und 
verschiedenen Random-Regression- Modellen zeigte, dass für die genetische Analyse von täglichen Zunahmen 
mindestens Polynome 2. Grades verwendet werden müssen. 
 
Schlüsselwörter: Fleischrindbullen, tägliche Zunahme, Random-Regression, Heritabilität 
 
 
  Introduction 
Growth traits, such as bodyweight and particularly average daily gains, are important 
performance indicators for dual-purpose cattle breeds (GOYACHE et al., 2003; 
CANTET et al., 2003). For such growth traits, there is an increased availability of 
repeated records per animal gathered over a certain test period. FITZHUGH (1976) 
analyzed the possibility to modify the shape of growth curves. LEGARRA et al. 
(2004) developed a methodology for the conversion of parameters of multi-trait and 
random regression models. They suggested using cubic Legendre polynomials in order 
to assure the sufficient fit of the models with minimal artifacts. MEYER (1999a, b) 
and ALBUQUERQUE and MEYER (2001) calculated genetic and phenotypic 
covariance functions for different growth stages of beef cattle. They described the 



 
KREJČOVÁ et al.: Estimation of Genetic Parameters for Daily Gains of Bulls with Multi-Trait and Random Regression Models 

 

38

covariance structure between the effects of the animal and of the permanent 
environment. Genetic parameters for beef cattle cows were estimated by ARANGO et 
al. (2002). BOHMANOVÁ et al. (2003) used the random regression methodology for 
the description of differences in the growth curves of beef cattle. 
 

Since the average daily gains are calculated from three successive observations of the 
bodyweight, this trait requires not the test day but the test month (or in even broader 
terms, the test season) to be taken into account as environmental effect when 
composing the model. Due to the continuous sending of bulls to test stations over 
several years, the animals differ in their age on the test day. As a result, models are to 
be preferred which directly take into account not only the systematic environmental 
effects of the test months but also the growth stage of the animals when describing the 
test-day performance in mathematic-statistical terms (MEYER, 2001; MALOVRH, 
2003). Similarly to the conditions prevailing for dairy cows, it appears to be a suitable 
approach to model the growth curves of, for example, members of a herd with the help 
of covariates with fixed regression coefficients. These so-called fixed regression 
models (FRM) exclusively employ covariates with fixed regression coefficients to take 
the different age of animals on the test day into account. While FRMs only estimate a 
fixed deviation per animal for the whole growth period, random regression models 
(RRM) can be used to map animal-specific performance deviations for any age with 
the help of individual growth curves (SCHAEFFER and DEKKERS, 1994; SWALVE, 
1995; JAMROZIK and SCHAEFFER, 1997). NOBRE et al. (2002) analyzed the live 
weights for a large population of beef cattle using random regression models and then 
compared their calculations to results based on a multi-trait model. 
 

The objective of this paper is to adjust random regression models suited for the 
analysis of average daily gains. Due to special data preparations, it became possible to 
use a multi-trait model as reference model. The time-dependent heritability values and 
the genetic correlations estimated with various RR models, which differed in their 
polynomial degree, were compared to the results from the reference model.  
 
 
  Material and Methods 
The growth data analyzed in this study were gathered from more than 6,000 bulls of 
the Czech Pied breed. In particular, dual-purpose cattle of Simmental type (medium to 
large body size) were used. The data were collected at 7 breeding stations over a 
period of 20 years. The tested bulls are descendants of a total of 253 sires. On average, 
every bull had 26 half-sibs. In order to be able to evaluate the performance data with a 
multi-trait model, 8 age periods were defined: from day 12 to day 62, from day 63 to 
day 113, from day 114 to day 164, from day 165 to day 215, from day 216 to day 266, 
from day 267 to day 317, from day 318 to day 368, and from day 369 to day 420. As 
average daily gain (DG1 to DG8) of a certain animal within these 50-day age periods, 
the performance with the smallest temporal distance to the middle of the age period 
(i.e. day 37, 88, 139, 190, 241, 292, 343 and 394) was selected. The other records from 
these age periods were omitted. As a result, every bull disposed of a minimum of 4 and 
a maximum of 8 records on the average daily gains (DG) of the bodyweight during the 
test period. The descriptive statistics for traits DG1 to DG8 are contained in Table 1. 
The analysis of the modified data was carried out: 

a) with single-trait models (STM) 
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b) with an 8-trait model (multi-trait model, MTM) 
c) with random regression models (RRM) (when describing the individual daily gains of 

the bodyweight with Legendre polynomials). 
The effects of station, year and season were taken into account through the creation of 
Herd*Year*Season classes (HYS) with 3-month intervals chosen for the season. 
 
Table 1 
Number of records (N), means and standard deviations (SD) for the average daily gain (Anzahl Beobachtungen, 
Mittelwerte und Standardabweichungen für das Merkmal tägliche Zunahme) 

Trait Age (in days) Middle of the interval N Mean (g/day) SD 

DG1 (12 – 62) 37 978 743.7 196.2 
DG2 (63 – 113) 88 3948 930.1 213.9 
DG3 (114 – 164) 139 5236 1144.3 249.1 
DG4 (165 – 215) 190 6052 1242.8 218.5 
DG5 (216 – 266) 241 6095 1288.3 206.3 
DG6 (267 – 317) 292 5610 1249.5 214.7 
DG7 (318 – 368) 343 4593 1124.9 229.0 
DG8 (369 – 420) 394 1729 955.7 247.0 
DG (12 – 420) 216 34241 1156.3 261.4 

 
Per HYS class, at least 40 records were required to be available. The occasional 
difference of age of the animals within an age period was corrected with the help of a 
square regression of the age within the 8 age periods. Let yijk be the record of animal j 
in HYS-class i for trait k gathered at age tijk. For the multi-trait model, we then obtain 
the following shape: 
 

(MTM) ijkijkijkijkikijkikikijk epatty +++++= 2
,2,1,0 βββ  

 

Here, βm,ik denotes fixed regression coefficients (with m= 0,1,2), aijk is the additive-
genetic effect of animal j in HYS-class i for trait k, pijk represents the permanent 
environmental effect of animal j, and eijk is the random residual effect. Let a = 
(a1,…,aN)’ with aj = (aj1,…,ajn)’ be the vector of additive-genetic effects of all animals, 
and let A denote the numerical relationship matrix; it follows: 
 aja GaVarGAaVar =⊗= )(            with)(  
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Permanent effects and residual effects of different animals are assumed uncorrelated. 
Since this study does not allow to record two traits at the same time for the same 
animal, matrix Re is diagonal. The permanent effects in the MTM serve to take into 
account that environmental effects or other circumstances might permanently affect 
the performance of an animal. 
During the evaluation with RR models, Legendre polynomials of the 2nd to the 4th 
degree were fitted with fixed regression coefficients within the HYS classes 
(MIELENZ et al., 2007). For the description of individual gains, Legendre 
polynomials with random regression coefficients were used with the polynomial 
degree being increased step-wise from 1 to 4.  
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The following random regression model was used for the analysis of average daily 
gains: 
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With:  yij k  = gain at age k of animal j in Herd*Year*Season i, 
   tijk  = the standardized age in interval (-1,1),  
  )(⋅mφ = the orthogonal Legendre polynomial of degree m,  
  imβ  = fixed regression coefficients within Herd*Year*Season i, 

  jmα  = the additive-genetic random regression coefficient of animal j, 
  jmγ  = the permanent environmental regression coefficient of animal j  
  ijke   = random residual effect. 

Let jα  and jγ  be the vectors of the random regression coefficients of animal j with 

aj KVar =)(α  and pj KVar =)(γ . Furthermore, ))(),...,(,( 10 ′= knkk tt φφφφ  shall denote the 
vector of the covariates at age kt . Then, the genetic and phenotypic covariance 
functions are of the following structure: 
 

(cf1)  kakkk Ktgtg φφ′=′ ))(),(cov(  
(cf2)  )(          with )())(),(cov( 22

ijkeekkkpakkk eVarKKtyty =++′= ′′ σσδφφ  
 

Here, kkkk ′==′ for     1δ ; otherwise, it is zero. Formulas (cf1) and (cf2) can be used for 
the estimation of the genetic and phenotypic correlations between daily gains at a 
different age (for details, see ALBUQUERQUE and MEYER, 2001).  
The statistical analysis of the data was performed with the program package SAS, 
whereas the estimation of variance components made use of the REML method of the 
program VCE5 (KOVAC et al., 2002). 
 
 
  Results 
The heritability values estimated with the single-trait models (STM) and with the 
multi-trait model (MTM) are provided in Table 2. For all traits, there are only slight 
differences between the heritability values of the models with one variable and those 
of the respective MTM. The highest h2-values were found for trait DG1 (i.e. the gain 
for the age of 37 days), whereas the age of 394 days showed the lowest estimates. 
When considering the heritability values of the two estimations over all age periods, 
very similar trends could be observed. 
From Table 2, it becomes obvious that the gains for an age of 37 and 88 days as well 
as the gains for older animals are very weakly or even negatively correlated. The 
larger the temporal distance between observations, the smaller the genetic correlations 
between DG3 and DG4 up to DG8. The only phenotypic correlations with rather 
moderate values between 0.19 and 0.48 are those between directly adjacent traits. 
Phenotypic correlations between non-adjacent observations are close to zero and lie 
between -0.03 and 0.16. For the heritability values of traits DG1 and DG8, the MTM 
returned standard errors of 0.03 and 0.02 respectively. In contrast, the standard errors 
for the h2-values of traits DG2 to DG7 were found between 0.006 and 0.009. The 
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estimated standard errors for the genetic correlations of the 8 traits varied between 
0.02 and 0.10.  
 
Table 2 
Heritability values, genetic correlations (above the diagonal) and phenotypic correlations (below the diagonal) 
estimated with the multi-trait model. (Heritabilitäten, genetische Korrelationen (oberhalb) und phänotypische 
Korrelationen (unterhalb der Diagonale) geschätzt mit einem Mehrmerkmalsmodell) 

 Trait 
 DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 

DG1 0.290 0.156 -0.131 -0.117 0.033 -0.013 0.208 0.045 
DG2 0.503 0.100 0,717 0.177 0.269 0.067 0.290 0.203 
DG3 0.157 0.335 0.132 0.742 0.693 0.439 0.418 0.366 
DG4 0.162 0.120 0.229 0.168 0.903 0.531 0.451 0.403 
DG5 -0.012 0.038 0.046 0.227 0.203 0.706 0.654 0.542 
DG6 -0.021 0.002 0.016 0.081 0.187 0.167 0.864 0.808 
DG7 0.020 0.022 -0.002 0.020 0.059 0.213 0.130 0.959 
DG8 0.127 0.052 0.073 0.071 0.049 0.073 0.419 0.045 

1STM 0.320 0.069 0.125 0.173 0.225 0.165 0.120 0.025 
1estimates from single-trait model 
 
Two statistics were used to measure the quality of fit for the different models: the 
correlation between observed and predicted values ( yyr ˆ, ) and the correlation between 
the values predicted with random regression models and those predicted with the 
MTM ( )(ˆ,ˆ MTMyyr ). The number of model parameters, the model fitting statistics, and the 
smallest and largest eigenvalues of matrices Ka and Kp, transformed to percentage 
values, are given in Table 3. As expected, the most complex model yielded the 
strongest correlations with values of 0.86 and 0.95. Even though the number of 
parameters differs strongly between the models in question, quite similar correlations 
could be found between the predicted values of the MTM and those of models RR2, 
RR3 and RR4.  
 
Table 3 
Number of fixed effects (p), number of variance components (q), correlations between observed and predicted 
values, and minimum and maximum genetically conditioned and permanent environmentally conditioned 
eigenvalues given in % (Anzahl fixe Effekte, Anzahl Varianz-komponenten sowie genetisch und 
umweltbedingte minimale und maximale Eigenwerte) 

Model p q yyr ˆ,  )(ˆ,ˆ MTMyyr  )(min aKλ  )(max aKλ  )(min pKλ  )(max pKλ  

RR1 561 7 0.755 0.899 24.7 75.3 12.9 87.1 
RR2 561 13 0.798 0.916 21.0 45.9   0.0 67.3 
RR3 648 21 0.829 0.937   0.0 57.1   0.0 61.6 
RR4 825 31 0.856 0.954   2.1 60.0   0.0 46.2 

 
Since RR2, RR3 and RR4 differ in their number of fixed effects, no information 
criteria can be used for the selection of an appropriate model. The leading eigenvalue 
of model RR1 reveals that its associated eigenvector accounts for over 75% of the 
additive-genetic variation (KIRKPATRICK et al., 1990). The top genetic eigenvalues 
corresponding to the constant coefficients of the polynomials explain more than 45%, 
57% and 60% of the genetic variation for models RR2, RR3 and RR4 respectively. 
Eigenvalues close to zero reveal the possibility to reduce the order of the polynomials. 
The estimates of the heritability based on the RR models at the 8 points of 
measurement are listed in Table 4. 
With values of 0.26, 0.16 and 0.07, the comparison of the h2-values estimated with the 
MTM and those estimated with models RR2, RR3 and RR4 showed a significant 
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underestimation for trait DG1. For the models with polynomials of the 3rd and 4th 
degree, the strongest underestimations were found at the beginning of the test period 
(i.e. for an age of less than 88 days). The estimated average heritability values for the 
total test period from day 12 to day 420 when using models RR1, RR2, RR3 and RR4 
are 0.125, 0.140, 0.124 and 0.127 respectively. 
 
Table 4 
Comparison of heritability coefficients for varying age estimated with different models (Vergleich der 
Heritabilitätskoeffizienten für verschiedene Altersabschnitte ) 

Model DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 
MTM 0.290 0.100 0.132 0.168 0.203 0.167 0.130 0.045 
RR1 0.127 0.113 0.104 0.102 0.109 0.125 0.146 0.169 
RR2 0.261 0.115 0.104 0.147 0.164 0.134 0.094 0.129 
RR3 0.164 0.071 0.115 0.148 0.162 0.156 0.120 0.073 
RR4 0.069 0.083 0.112 0.180 0.190 0.148 0.129 0.076 

 
The MTM and models RR2 to RR4 differed only slightly in their h2-values for traits DG2 to 
DG8. With model RR1 excluded from the considerations, the h2-values from the RR models 
for traits DG2, DG3, DG4, DG5, DG6 and DG7 lie between 0.07 and 0.12, between 0.10 and 
0.12, between 0.15 and 0.18, between 0.16 and 0.19, between 0.13 and 0.16, and between 
0.09 and 0.13 respectively. 
 

The trends in the heritability estimates over the age for the comparison of RR1 and 
RR3 with the MTM as well as for the comparison of RR2 and RR4 with the MTM are 
shown in Figures 1 and 2 respectively. Figure 1 indicates that the estimates with model 
RR1 and those with the MTM are not equivalent. 
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Fig. 1: Estimated heritability function of RR1 and 
RR3 compared to the MTM estimates (Mit RR1 
und RR3 geschätzte h2-Funktionen im Vergleich zu 
den Schätzungen mit MTM) 

Fig. 2: Estimated heritability function of RR2 and 
RR4 compared to the MTM estimates (Mit RR2 
und RR4 geschätzte h2-Funktionen im Vergleich zu 
den Schätzungen mit MTM) 
 

 

For lower age values, the heritability estimates based on models RR3 and RR4 do not 
match with those from the MTM. For intermediate and high age values, the estimates 
of models RR3, RR4 and the MTM are very similar. The trend in the heritability 
estimates for the MTM (shown in Fig. 1) can quite easily be modeled with the help of 
the estimated h2-curves of models RR2 and RR3. The best visual match with the 
estimates of the MTM were returned by the RR model based on polynomials of the 2nd 
degree. The estimated standard deviations of the environmental components over all 
age periods are shown in Figures 3 and 4. 
The environmental variance (VE) was calculated as the sum of the permanent (VEP) 
and the temporary environmental variance (VET) for a given age. The  estimates of  the 
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environmentally conditioned standard deviation of the MTM increase for young 
animals (age of 37 to 139 days), decrease for intermediate age values (day 139 to day 
241) and increase again for high age values (day 241 to day 394). The largest 
differences between estimates of the environmentally conditioned standard deviation 
of the RR models and those based on the MTM were found for extreme age 
differences. Respective extreme differences were obtained with the comparison of the 
MTM to RR2 and of RR3 to RR4 for the high age of 394 days, and with the 
comparison of the MTM and all RR models for the young age of 37 days. Similar 
estimates of the environmentally conditioned standard deviation were returned by all 
models for the age period between 139 and 343 days. 
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Fig. 3: Estimated function of the environ-mentally 
conditioned standard deviation (SD) for RR1 and 
RR3 compared to the estimates from the MTM (Mit 
RR1, RR3 und MTM geschätzte umweltbedingte 
SD) 

Fig. 4: Estimated function of the environ-mentally 
conditioned standard deviation (SD) for RR2 and 
RR4 compared to the estimates from the MTM (Mit 
RR2, RR4 und MTM geschätzte umweltbedingte 
SD) 

 

The average correlations as a function of the length of the time interval (lag) between 
two repeated observations per animal are illustrated in Figures 5 and 6. Between two 
successive observations, there is a temporal distance of 51 days. If the interval of 51 
days is set to 1, the temporal distance (d) in the MTM can only lie between values 
from 0 to 7. For d=0, the average correlation is equal to 1. For d=1 and d=2, the 
average correlation can be calculated with 7 and 6 values from Table 2 respectively. 
The average correlations of the RR models as a function of d were estimated using the 
covariance function (cf2). Figures 5 and 6 show that the average correlations tend to 
decrease with increasing temporal distance. For d=6 and d=7, the largest differences 
were found between all RR models and the MTM. The trend in the correlation 
estimates of the MTM can be modeled adequately using RR2 (Fig. 6). 
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Fig. 5: Average phenotypic correlations estimated 
with RR1, RR3 and MTM (Mittlere phänotypische 
Korrelationen geschätzt mit RR1, RR3 und MTM) 

Fig. 6: Average phenotypic correlations estimated 
with RR2, RR4 and MTM (Mittlere phänotypische 
Korrelationen geschätzt mit RR2, RR4 und MTM) 
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  Discussion 
For the period from day 12 to day 420, the heritability values for the average daily 
gains of bodyweight estimated with the MTM are relatively low with values between 
0.06 and 0.31. Excluding the beginning of the test period, the highest h2-values fall 
into the period from day 267 to day 317. Except for the beginning of the test period, 
the heritability values estimated with the MTM were reflected quite well with RR 
models using polynomials of the 2nd to the 4th degree. If the average daily gains for the 
age are calculated over all bulls, the result will be a curve that can be described very 
well with the help of a square function. As a consequence, the RR models should be 
based on polynomials of at least the 2nd degree as well.  
The heritability estimates and the environmentally conditioned standard deviations for 
the beginning and end of the test period, estimated with the MTM and models RR2 to 
RR4, partially exhibit significant differences. One reason for this might be the 
relatively low number of records for the age periods at the beginning and end of the 
test period. For the RR models, at least 40 records per HYS class were available. 
When using a multi-trait model, the number of observations within the HYS classes 
must be additionally divided by the number of traits. Since there were considerably 
fewer observations available for trait DG1, the number of observations can turn out 
quite low for some of the HYS classes. Therefore, additional genetic calculations with 
the MTM under the assumption of random HYS effects were performed. The genetic 
parameters based on fixed and random HYS effects showed highly similar values. 
Thus, the only results presented in this study are those from the multi-trait analysis 
with fixed HYS effects. 
Partially significant differences were found between the correlations estimated with 
the MTM and those obtained with the RR models. The latter allow the calculation of 
correlations between two arbitrary points in time. In contrast, the MTM is only used to 
estimate the correlations between time periods. Not every animal disposes of a record 
for the exact middle of the 8 time periods. As a result, inevitable differences between 
the genetic parameters of the MTM and those of the RR models are to be expected. 
For the analyzed RR models, the polynomial degree of the fixed and random 
regression matches. Additionally, variants were analyzed for which the degree of the 
fixed regression was below the polynomial degree of the random regression. In these 
cases, the resulting h2-values were considerably less adjusted to the estimates of the 
MTM. In model (RRn), it is assumed that the expected values of all random effects are 
equal to zero. Therefore, the polynomial degree of the fixed regression should not be 
lower than the degree of the polynomials with random coefficients. As a consequence, 
the polynomial degrees had to be adjusted with the result that the 4 analyzed RR 
models sometimes differed strongly in their number of fixed model parameters. The 
likelihood function of the REML method is independent from the fixed model 
parameters. Thus, the information criteria of Akaike (AIC) or those of Bayes (BIC) 
based on the restricted likelihood function can only be used for the optimization of the 
covariance structure of the random model effects for respective identical structures of 
expected values. In this study, the fixed regression parts of models RR2, RR3 and RR4 
were modeled with increasing order of the polynomials; therefore, AIC and BIC could 
not be used during the selection of the best covariance structure. This is why the 
selection of suitable RR models in this study focuses on the comparison of the 
estimates from RR models with those from the MTM. Model RR2 returned the best 
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visual match with the heritability values estimated with the MTM. The disadvantage of 
RR2 lies in the inadequate modeling of the environmental variance for low age. In 
order to improve the model fitting based on RR2, the residual variance should not be 
considered invariable but instead should be modeled with the help of square or cubic 
functions. 
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