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Abstract 
The inverse of the conditional gametic relationship matrix ( -1G ) for a marked quantitative trait locus (MQTL) is 
required for estimation of gametic effects in best linear unbiased prediction (BLUP) of breeding values if marker 
data are available. Calculation of the “condensed” gametic relationship matrix *G  - a version of G  where linear 
dependencies have been removed - and its inverse *-1G  is described using a series of simplified equations 
following a known algorithm. The software program COBRA (covariance between relatives for a marked QTL) 
is introduced, and techniques for storing and computing the condensed gametic relationship matrix *G  and the 
non-zero elements of its inverse are discussed. The program operates with both simple pedigrees and those 
augmented by transmission probabilities derived from marker data. Using sparse matrix storage techniques, 

*G and its inverse can be efficiently stored in computer memory. COBRA is written in FORTRAN 90/95 and 
runs on a variety of computers. Pedigree data and information for a single MQTL in the German Holstein 
population are used to test the efficiency of the program. 
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Zusammenfassung 
Titel der Arbeit: Berechnung der eingedampften gametischen QTL Verwandtschaftsmatrix und ihrer 
Inversen 
Die Inverse -1G  der Gametischen Verwandtschaftsmatrix für einen QTL (quantitative trait locus) mit 
gekoppelten Markern wird für eine markerunterstützte Zuchtwertschätzung benötigt. Es wird beschrieben wie 
die eingedampfte gametische Verwandtschaftsmatrix *G  - eine Variante von G  ohne lineare Abhängigkeiten - 
in einer Abfolge einfacher Rechenschritte nach einem bekannten Algorithmus berechnet werden kann. Das 
EDV-Programm COBRA (covariance between relatives for a marked QTL) wird vorgestellt, um anschließend 
Techniken für die Speicherung und die Berechnung von *G  und die Nicht-Nullelemente ihrer Inversen zu 
besprechen. COBRA kann sowohl einfache Pedigreedaten als auch Pedigreedaten mit Markerinformation 
verarbeiten, wobei Speichertechniken für dünnbesetzte Matrizen eingesetzt werden. COBRA ist in FORTRAN 
90/95 geschrieben und kann auf einer Vielzahl verschiedener Rechner laufen. Pedigreedaten und Informationen 
für einen einzelnen MQTL in der deutschen Holstein-Population werden benutzt, um die Effizienz des 
Programms zu prüfen.  
 
Schlüsselwörter: Marker-gestützte Selektion, bester linearer unverzerrter Prediktor, gametische Verwandt-
schaftsmatrix 
 
 
1.  Introduction 
The joint utilization of marker and phenotype information in current genetic prediction 
models is evolving rapidly. FERNANDO and GROSSMAN (1989) incorporated 
marked quantitative trait loci (MQTL) information into the existing best linear 
unbiased prediction (BLUP) breeding value estimation model by splitting the ‘genetic’ 
portion of the model into the additive effects of the unique QTL gametes and the 
polygenic effects. In order to include MQTL information in the estimation model, the 
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inverse of the conditional covariance matrix of QTL allele effects G  is required 
( 1−G ).The efficient computation of matrices like G  and 1−G  for large pedigrees is 
crucial for further successful incorporation of marker data in genetic evaluation 
models. 
A numerically efficient algorithm for the calculation of G  and its inverse for an 
MQTL was developed by ABDEL-AZIM and FREEMAN (2001) based on the work 
of FERNANDO and GROSSMAN (1989), VAN ARENDONK et al. (1994) and 
WANG et al. (1995). TUCHSCHERER et al. (2004) showed that the calculation of G  
depends on the mode of gamete identification (gametes identified by markers vs. 
gametes identified by parental origin), although the final MA BLUP breeding value of 
each animal is identical irrespective of the gamete identification method employed. 
They suggested that gamete identification by parental origin may have practical 
advantages compared to that by markers; for example, fewer values are required to 
denote marker related transmission probabilities. More importantly, the generalisation 
developed by TUCHSCHERER et al. (2004) showed that under certain circumstances 
identical rows and columns in G  may occur if parents pass identical copies of their 
gametes to their offspring (i.e. G  may be rank deficient); in such cases, the inverse 
matrix 1−G  is not defined.   By excluding duplicate gamete information, the number of 
gametic effects in G  can be reduced to a smaller set of unique effects in a ‘condensed’ 
gametic relationship matrix *G ; *G  is always of full rank and 1*−G  is defined. 
Additionally, the smaller *G  matrix requires less memory and may be calculated faster 
than a larger one. 
In the first section of this article, the calculation of *G  and its inverse is described to 
illustrate the practical application of the generalised algorithm presented by  
TUCHSCHERER et al (2004). Secondly, the software program COBRA (covariance 
between relatives at a marked QTL) is introduced, and techniques for determining, 
storing and computing the condensed gametic relationship matrix *G  and the non-zero 
elements of its inverse are discussed. Finally, pedigree data and information for a 
single marker in the German Holstein population are used to test the efficiency of the 
program. 
 
 
2.  Calculating *G and its inverse 
The matrix G  was developed by SMITH (1984) and SMITH and ALLAIRE (1985) to 
calculate the probability of any two gametes being identical by descent in an inbred 
population (cited by SCHAEFFER et al., 1989). It is symmetric and contains one row 
and one column for each gamete (i), which are calculated from the rows and columns 
belonging to the gametes’ predecessor gametes (called the gametes’ parents here 
forth). The diagonal elements of G  are equal to one ( *

( , ) 1.0i i =G  for gamete i), as the 
probability of a gamete being identical to itself is always equal to one. The probability 
that the parental gamete received from the sire of the animal, Pga and the parental 
gamete from the dam Mga are identical by descent is the inbreeding coefficient fa of 
individual a, *

( , )a aPg Mg af=G ).  
In a pedigree with n animals, the matrix G  has the dimension 2n x 2n because every 
animal is assumed to have two unique gametes. However, if an exact copy of a 
parental gamete is passed to its offspring, the effects of that gamete are included twice 



 
BAES; REINSCH: Computing the condensed conditional gametic QTL relationship matrix and its inverse 

296

in G ; the computation of 1−G  fails due to the linear dependencies in G  (see section 4. 
in TUCHSCHERER et al., 2004). If copied alleles are excluded and only unique 
gametes are assigned rows and columns in *G , the linear dependencies caused by 
identical rows and columns no longer exist. This means that animals with two unique 
gametes contribute two rows and two columns to *G , animals with one unique gamete 
and one copy of a gamete contribute only one row and column, and for animals with 
two copied gametes no rows or columns are added. The determination of unique and 
copied gametes depends on the pedigree and transmission probability information and 
is outlined below.  
 
2.1  Assumptions 
Consider one or several marker loci closely linked to a quantitative trait locus 
(MQTL), with linkage equilibrium between the markers and the MQTL. A 
recombination rate of zero may occur between an MQTL and one (or more) marker(s). 
Markers may be single, flanking or multiple for the MQTL, and the number of markers 
and the distance between them is not limited. The first allele is assumed to be the 
paternal gamete (Pg) and the second is considered to be the maternal gamete (Mg). 
The paternal transmission probability (T(Pg)) is the probability that the sire of an animal 
passed his paternal (first) gamete to his offspring. Likewise, the maternal transmission 
probability (T(Mg)) is the probability that the dam of an animal passed her paternal 
(first) gamete to her offspring. The probability of the maternal (second) gamete of the 
sire or dam being passed on to the offspring can be calculated by subtracting the 
paternal or maternal transmission probability (respectively) from one. Thus two values 
(paternal and maternal) actually represent all four possible probabilities. 
 
2.2  Method 
The calculation of the gametic relationship matrix using recursive algorithms requires 
an ordered pedigree in which parental animals occur before their progeny, and 
transmission probabilities for all non-founder individuals conditional on marker 
information for the paths sire  progeny and dam  progeny. The calculation of 
transmission probabilities is described by MAYER et al. (2007, submitted). For 
missing and non-informative markers the transmission probability is 0.5; the resulting 
contributions to the relationship matrix are identical to those in the classical numerator 
relationship matrix.  
If an animal has a transmission probability of one for a certain gamete, that animal will 
receive the paternal gamete from its respective parent with 100% certainty; the gamete 
received by the animal is an exact copy of the parental gamete and is not unique. 
Conversely, if a transmission probability of zero occurs for a given gamete, the animal 
will receive the maternal gamete from its respective parent with 100% certainty.  
It is possible to set up a gametic pedigree following the calculation of transmission 
probabilities; the number of unique gametes can be determined and the size of *G  can 
be calculated. All unique paternal and maternal gametes are assigned an integer 
identification number in ascending order. Predecessor gametes of paternal gametes, 
Pg(Pg) and Mg(Pg), and predecessor gametes of maternal gametes, Pg(Mg) and Mg(Mg) 
must also be considered. 
In contrast to the gametic identification numbering method employed in the 
calculation of G , non-unique gametes do not receive unique identification numbers in 
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*G . If a gamete is passed from a parent to its offspring with 100% certainty, it is 
included in the gametic pedigree with the same identification number as the gamete 
from which it originated.  
 
2.3  Calculation of the matrix *G  
The calculation of *G  is described by equation (9) in TUCHSCHERER et al. (2004). 
If the information in the pedigree is sorted with parents precede their progeny, it is 
possible to build *G  recursively starting with the top left corner and working towards 
the right. The transmission probability assigned to the gamete depends on whether it is 
the paternal or maternal gamete of the animal in question. 
The matrix *G  is symmetric, therefore only the upper triangular matrix needs to be 
calculated; the lower triangular matrix is identical to its upper counterpart. Let (i,j) 
represent the row and column indices for an element in *G  and assume that i>j. The 
elements of each column are calculated from row one until the last row before the 
diagonal (j-1), using the information from the predecessor gametes and the 
transmission probability of the gamete being calculated.  
For columns of paternal gametes with known predecessors (i.e. j is a paternal gamete), 

 
( ) ( )

* * *
( , ) ( ) ( , ) ( ) ( , )(1 )

j Pg j j Pg ji j Pg i Pg Pg i MgT T= × + − ×G G G     (1) 

where T(Pg)j is the transmission probability for the paternal gamete j, i denotes the row 
to be calculated, Pg(Pg)j is the paternal predecessor gamete of the paternal gamete j and 
Mg(Pg)j is the maternal predecessor gamete of the paternal gamete j. The calculation of 
columns of maternal gametes with known parents (i.e. j is a maternal gamete) is 
accomplished similarly, 
 

( ) ( )

* * *
( , ) ( ) ( , ) ( ) ( , )(1 )

j Mg j j Mg ji j Mg i Pg Mg i MgT T= × + − ×G G G     (2) 

where T(Mg)j is the transmission probability for the maternal gamete j, i is the row to be 
calculated, Pg(Mg)j is the paternal predecessor gamete of the gamete j and Mg(Mg)j is the 
maternal predecessor gamete of the gamete j. If the predecessors of i and j are 
unknown, *

( , ) 0i j =G . In this way, *G  can be calculated for all unique gametes and no 
linear dependencies occur. 
 
2.4  The inbreeding coefficient 
The inbreeding coefficient at the MQTL, fa, is the probability that the gametes at the 
MQTL in individual a are identical by descent and can be found in the element 
(Pg,Mg) of *G  for each individual. In G , this value is always located directly above 
the diagonal of the maternal gamete (or below the diagonal of the paternal gamete) for 
every individual. Although *G  also contains inbreeding coefficients for each 
individual, they are not necessarily located in the same position as in G  (i.e. directly 
above the maternal gamete of the individual) because the matrix is ordered differently 
due to the exclusion of non-unique gametes.  
It is important to realize that the fa of an animal is a function of its respective 
transmission probabilities and the relationships between its parental gametes. Although 
the fa are the only elements of *G  required to calculate its inverse, it is apparent that 
the fa of an individual depends on certain pre-existing elements of *G . Technically, 
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only very specific elements of *G  are needed for the calculation of its inverse. TIER 
(1990) described how the minimum subset of matrix G  required for the calculation of 

1−G  can be determined. However, the computation method presented here is sufficient 
for medium-sized pedigrees with a half sib structure.  
 
2.5  Calculation of the matrix 1*−G  
The detailed calculation of 1*−G  is described by equation (10) in TUCHSCHERER et 
al. (2004). The matrix 1*−G  can be calculated using only the pedigree information 
(from which the gametic pedigree is derived), the inbreeding coefficient of each 
individual and the paternal and maternal transmission probabilities. The size of  1*−G  is 
the same as that of *G , and each column and row are once again assigned to one 
gamete. Only the elements of the upper triangular matrix are calculated; the lower 
triangular matrix is obtained by symmetry. Whereas the calculation of *G  consisted of 
adding one column (and therefore one diagonal) for every unique gamete to an 
existing matrix, 1*−G  is calculated by adding one column and one diagonal for every 
gamete as well as adding values to specific existing elements in 1*−G .  
It is possible to build 1*−G  for one individual at a time by passing through the pedigree 
from the first individual to the last, where one of four possible situations may occur: 
 

1 - the individual has no unique gametes (no columns or rows are added): 
- no changes are made to the existing matrix 
 

2 - only one gamete is unique (only one column is added, paternal or maternal): 
- one new diagonal exists,  
- up to two new values exist in the new column and 
- up to three values in the existing matrix are altered 
 

3 - both gametes are unique (two columns added): 
- two new diagonals exist,  
- up to four new values exist in the new columns and  
- up to six values in the existing matrix are altered 
 

Let Pg and/or Mg represent the new column(s) in 1*−G , and therefore also the unique 
paternal or maternal gamete (respectively) of an individual. If situation 1 occurs, no 
calculations need to be made and no columns are added because the contributions of 
such individuals have already been accounted for. 
If an individual has one unique paternal gamete, the following calculations are made 
using the paternal transmission probability T(Pg) of the individual and the inbreeding 
coefficient of the individuals’ sire. The elements of 1*−G  where values are to be added 
are located in the columns of the paternal gametes’ predecessor gametes Pg(Pg), Mg(Pg), 
and the elements where values are to be subtracted are located in the column of the 
gamete Pg with the exception of the diagonal, which is positive. For the new diagonal 
element: 
 

* 1
( , ) 1/Pg Pg id− =G          (3a) 

for the new elements in the added column: 
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( )

* 1
( , ) ( )( / )

PgPg Pg Pg iT d− = −G         (3b) 

( )

* 1
( , ) ( )(1 ) /

PgMg Pg Pg iT d− = − −G        (3c) 

and for the elements in the existing matrix: 

( ) ( )

2* 1
( , ) ( )( / )

Pg PgPg Pg Pg iT d− =G        (3d) 

( ) ( )

* 1 2
( , ) ( )(1 ) /

Pg PgMg Mg Pg iT d− = −G        (3e) 

( ) ( )

* 1
( , ) ( ) ( )( )(1 ) /

Pg PgPg Mg Pg Pg iT T d− = −G       (3f) 

where ( ) ( )2 (1 )(1 )i Pg Pg sired T T f= − − if the sire is known, and id =1 if the sire is unknown 
(see equation 10 in TUCHSCHERER et al. (2004) and appendix A for a proof of id ). 
If an individual has one unique maternal gamete, the same calculations are made, 
however, the maternal transmission probability T(Mg) of the individual and the 
inbreeding coefficient of the individuals’ dam are used. The elements where values are 
to be added are located in the columns of the maternal gametes’ predecessor gametes 
Pg(Mg), Mg(Mg), and the elements where values are to be subtracted are located in the 
column of the gamete Mg with the exception of the diagonal, which is positive. For 
diagonal elements: 
 

* 1
( , ) 1/Mg Mg id− =G          (4a) 

for the elements in the added columns: 

( )

* 1
( , ) ( )( / )

MgPg Mg Mg iT d− = −G         (4b) 

( )

* 1
( , ) ( )(1 ) /

MgMg Mg Mg iT d− = − −G        (4c) 

and for the elements in the existing matrix: 

( ) ( )

2* 1
( , ) ( )( / )

Mg MgPg Pg Mg iT d− =G        (4d) 

( ) ( )

* 1 2
( , ) ( )(1 ) /

Mg MgMg Mg Mg iT d− = −G        (4e) 

( ) ( )

* 1
( , ) ( ) ( )( )(1 ) /

Mg MgPg Mg Mg Mg iT T d− = −G       (4f) 

where ( ) ( )2 (1 )(1 )i Mg Mg damd T T f= − − if the dam is known, and id =1 if the dam is 
unknown. 
If both Pg and Mg are unique, all 12 of the above calculations (i.e. Equations 3 a-f and 
4 a-f) are used. For base animals, two columns are added; the parental gametes are 
unknown, and only a one is added in the diagonal.  
The matrix 1*−G  is calculated for one individual at a time and therefore ‘layer by layer’ 
using the equations given above. Once all individual layers have been calculated, they 
are added to form the final matrix 1*−G .  
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3.  Computing *G  and its inverse 
The computation of matrices like G  and 1−G  require very large amounts of computer 
memory. ABDEL-AZIM and FREEMAN (2001) described computational techniques 
for calculating and storing the minimum possible elements of G  and its inverse using 
computational methods described by TIER (1990) and linked list storage techniques. 
Gametes were identified by markers. To the authors’ knowledge, computational 
techniques for efficiently calculating *G  and 1*−G  have not yet been published.  
The following section introduces and describes the software program COBRA, which 
is a FORTRAN (90/95) program designed to determine, store and compute the non-
zero elements of *G and 1*−G  using the TUCHSCHERER et al. (2004) algorithm with 
gametes identified by parental origin. It is shown that *G  and its inverse can be 
efficiently stored in computer memory or saved to file using sparse matrix storage 
techniques. 
COBRA operates in three main steps. In the first step, pedigree information is read in, 
checked for errors and written to three index matrices. The gametic index matrix is 
calculated and the user is informed of the number of animals and ‘unique’ gametes in 
the pedigree. In step two, *G  is computed from the index information and the 
inbreeding coefficients calculated are saved. The user is informed of the number of 
non-zero elements in *G  and the fill density of *G  (in percent). Finally, the index 
information from step one and the inbreeding coefficients from step two are used to 
calculate the 1*−G  matrix. The user is informed of the number of non-zero elements in 

1*−G  and the fill density of 1*−G  (in percent). Additionally, the number of individuals 
with no unique gametes, one unique paternal gamete, one unique maternal gamete and 
two unique gametes is given and the program is complete. COBRA includes the option 
of saving information on gamete occurrence, inbreeding coefficients with a reference 
list ordering gametes to animals and the non-zero elements of 1*−G  to file. 
 
3.1  Preparation of index matrices 
A text file containing the identification numbers of sire and dam, followed by the 
transmission probabilities of paternal and maternal gametes is the input pedigree. Each 
line in the input pedigree file signifies one individual and the pedigree must be ordered 
such that parents precede their progeny. The column j of all index matrices 
corresponds to the animal identification number (1 to n). The input pedigree file is first 
read to determine the number of animals (n) and to test for simple errors in the data 
(duplicate entries, wrong order, transmission probabilities > 1). The file is rewound, 
memory is allocated for the first two index matrices (index matrix N1 has dimension 2 
x n, index matrix N2 has dimension 3 x n) and the pedigree is read in. 
Index matrix N1 contains the parental identification numbers of animals 1 to n, with 
the identification number of the sire in the first row and that of the dam in the second. 
Unknown parents are assigned zeros. At this point, only the first two rows of index 
matrix N2 are read in; they contain the transmission probabilities of the paternal and 
maternal gametes of individuals 1 to n.  If the sire or dam is unknown, the transmission 
probability for the paternal or maternal gamete is considered to be 0.5. Linkage 
equilibrium is assumed. The third row of N2 remains empty at this point, but is filled 
with the inbreeding coefficients of animals 1 to n once step two is complete.  
The third index matrix N3 (dimension 6 x n) is now calculated from the information in 
N1 and N2. This matrix contains the paternal and maternal gamete identification 
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numbers of individual n in rows 1 and 4, respectively. The identification numbers for 
the paternal pair of predecessor gametes are saved in rows 2 and 3, and those of the 
maternal pair of predecessor gametes in rows 5 and 6. All paternal and maternal 
gametes are assigned an integer identification number in ascending order if the 
transmission probability of the gamete is not equal to 1.0 or 0.0, starting with the first 
animal in the pedigree. If the origin of a gamete is unknown, zeros are assigned as 
parental paternal and maternal gamete identification numbers.  
 
3.2  Writing *G  
The *G  matrix is calculated using the generalization of the tabular method of WANG 
et al. (1995) presented by TUCHSCHERER et al. (2004). This formulation adds the 
covariance information for each gamete column-wise to the upper triangle of *G , 
starting with column one. Columns are calculated from row one to the last row before 
the diagonal using the equations shown in section two, with the diagonal elements 
always equal to one.  
Only the non-zero elements of the upper half of *G  are saved in sparse IA, JA, A 
format (KNUTH, 1997), which reduces the memory requirements of the program. The 
position of non-zero elements in *G  is initially unknown and is calculated from 
information in the index matrices N2 and N3 for each particular gamete using the 
methods described in section two. As *G  is calculated, hashing is used to store and 
retrieve the required non-zero elements of *G . The organisation of the hash table is 
arranged on a “first come first serve” basis; when an element is to be inserted, the 
locations of its probe sequence are examined sequentially until an empty spot in the 
vector A is found. The new element is saved to that location and its coordinates are 
saved in the parallel IA JA vectors.  
Diagonals of gametes without offspring are included, however their columns are not 
calculated. Should certain elements of such columns be required for other calculations, 
only those specific elements are computed. This ‘economised’ method of calculating 

*G  saves a large amount of memory and increases the speed of the program 
considerably, especially if the input pedigree contains many individuals without 
offspring.  
Once *G  has been calculated, the inbreeding coefficient of each animal is retrieved 
from the IA, JA, A vectors and written into row three of the index matrix N2. The IA, 
JA and A vectors are cleared. As an option a list of animals, their respective paternal 
and maternal gametes and their inbreeding coefficients can be generated. The IA, JA, 
A vectors with the *G  matrix coordinates and values may also be sorted and saved to 
file before clearing if required. This may be useful when the data are to be processed 
by other software. 
 
3.3  Writing 1*−G  
The inverse 1*−G  of the condensed gametic relationship matrix can now be calculated 
using the TUCHSCHERER et al. (2004) generalization of the WANG et al. (1995) 
algorithm. Using index matrices N1, N2 and N3, values are either added to or 
subtracted from the required elements of 1*−G  as described in section two. A simplified 
flowchart of the COBRA procedure for calculating 1*−G  is included in Appendix B. As 
in the calculation of *G , only the non-zero elements of the upper half of the 1*−G  
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matrix are calculated and saved in sparse IA, JA, A format. Hashing methods are used 
to store and retrieve the required elements. A list including animal identification 
number, row and column indices and values of non-zero elements is generated and 
sorted for the further calculation of BLUP breeding values.  
 
4.  Practical validation 
Pedigree data from 12008 German Holstein bulls and bull dams (7174 males and 4834 
females) was used to test the efficiency of the program. Pedigree and marker 
information  originated from the second phase of the genome analysis project of the 
German Cattle Breeders Federation (Arbeitsgemeinschaft Deutscher Rinderzüchter, 
ADR) and is currently used for the MA BLUP evaluation of the trait somatic cell 
score. The pedigree was obtained from the United Information Systems Animal 
Production (Vereinigte Informationssysteme Tierhaltung w.V., VIT) in Verden, 
Germany. Information on a single highly polymorph marker with 15 alleles on 
chromosome 18 was included for 6520 typed animals (6050 males, 470 females). 
Allele frequencies ranged from 0.01% to 32.83%.  
Transmission probabilities were calculated by extracting standard partial pedigrees 
(individual, sire, dam, sire’s sire, sire’s dam, dam’s sire, dam’s dam) from original 
pedigree data and applying SimWalk2 software as described by MAYER et al. (2007, 
submitted) and TUCHSCHERER et al. (2007, in preparation). The partial pedigrees 
were grouped by available genotype information. The individual and its male ancestors 
(sire and dam’s sire) were genotyped in 33.6% of all partial pedigrees, followed 
closely by partial pedigrees in which the individual and its sire were genotyped 
(32.8%). Only 1.2% of the partial pedigrees contained full marker information for all 
individuals.  
At the marker, 4584 of the typed males were not identical by descent, while the 
remaining 1466 typed males had an average inbreeding coefficient of 0.0332. Typed 
females included 373 animals which were not identical by descent at the marker, while 
the remaining 97 animals had an average inbreeding coefficient of 0.0342. A summary 
of results, along with maximum and minimum inbreeding coefficients, is shown in 
Tab. 1. 
 
Table 1 
Average, minimum and maximum inbreeding coefficients at the marker for typed males and females given 
observed marker genotype (1,466 male and 97 female typed animals and 12,008 animals including non-typed 
animals) (Durchschnittliche, minimale und maximale Inzuchtkoeffizienten typisierter Tiere am Marker, 
abgeleitet aus den beobachteten Markergenotypen (für 1.466 männliche und 97 weibliche typisierte Tiere, sowie 
alle 12.008 Tiere einschließlich der nicht typisierten)) 

 Typed animals1 All animals 
 

 
 Male (1466) Female (97) (12008) 

Average IBC2 0.0332 0.0342 0.00433 
Minimum 0.0000834 0.000635 0.000 

Including Marker 
Information 

Maximum 0.455 0.377 0.455 
1  Only typed animals with an inbreeding coefficient > 0 are included. 
2  IBC = Inbreeding coefficient. 
 
The pedigree was analysed twice; once including marker information and once with 
transmission probabilities set to 0.5 (i.e. not including marker information). Tab. 1 
shows selected computational results from the COBRA program using the same 
pedigree with and without marker information.  
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It is apparent that the percentage fill in *G  is not as high as that in G  (see ‘% Fill’, 
Tab. 2). Although 1*−G  seems to be slightly more full than 1−G  (0.0278% compared to 
0.0232%), it should be noted that only 51,553 non-zero elements are included in 1*−G  
compared to 66,820 non-zero elements in 1−G , equating to a difference of more than 
15,000 elements (see ‘Remaining non-zero elements’, Tab. 2). Furthermore, the 
condensed matrix has approximately 4,700 fewer columns and rows than the 
uncondensed counterpart; 19,238 unique gametic effects were included in *G  and 1*−G  
compared to 24,016 effects in G  and 1−G  (see ‘Diagonals’, Tab. 2). 
 
Table 2 
Fill density (in percent), storage requirements, number of non-zero elements and execution time requirements for 
building *G  and 1*−G  using data from a 12008-animal pedigree with (first row) and without (second row) 
marker information (Besetzungsgrad (in Prozent), Anzahl der Nicht-Nullelemente, Ausführungszeit und 
Speicherauslastung für die Aufstellung von *G  und 1*−G  mit einem Pedigree bestehend aus 12.008 Tieren mit 
(oben) und ohne (unten) Markerinformation) 

 
 
 
 

% Fill 
Elements saved for 

gametes without 
offspring 

Remaining 
Non-zero 
Elements 

Execution 
time1 

(seconds) 
Diagonals 

*G  2.47 131,739,817 4,567,164 23.869 Including marker 
information 1*−G  0.0278  51,553 0.0359 

19,238 

G  3.29 212,134,432 9,499,265 46.900 Not including marker 
information 1−G  0.0232  66,820 0.0452 

24,016 

1A Dell Precision 630 Workstation with double processor (2x3.6 GHz Xeon, 2x72 GB SCSI hard drive, 8 GB RAM) running Suse-Linux 9.3 
(64 bit Version) was used in the evaluation. The program was compiled with Intel-Fortran Version 8.1 
 
The pedigree contained approximately 9,000 animals without offspring, which 
improved the efficiency of the program greatly since columns of G  and *G  relating to 
these gametes were not calculated (see ‘Elements saved for gametes without 
offspring’, Tab. 2), probably because the non-unique gametes often belong to younger 
animals which do not yet have offspring.  
 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 1: Average gamete occurrence (animals per gamete) in a 12,008 animal pedigree containing 19,238 unique 
gametes and 6,520 genotyped animals (Durchschnittliche Häufigkeit des Auftretens von  Gameten (Anzahl Tiere 
je Gamet) in einem Pedigree mit 12.008 Tieren, 19.238 eindeutigen Gameten und 6.520 typisierten Tieren) 
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Non-unique gametes have a potentially large effect on the population, especially if 
their copies occur frequently. Gametes in the current pedigree, which includes both 
typed and non-typed individuals, occurred an average of 1.25 times, with a maximum 
occurrence of 396. Fig. 1 shows that 18,004 gametes (93.59%) occur only once, while 
only 9 gametes (0.05%) have over 75 copies in bulls or bull dams.  
 
 
5.  Discussion 
This article describes how the conditional gametic relationship matrix and its inverse 
can be condensed using the TUCHSCHERER et al. (2004) algorithm. It describes how 
ordered pedigree information and transmission probabilities can be used to set up a 
gametic pedigree for the calculation of *G  and 1*−G . The computer program COBRA 
was introduced and its structure was explained. Finally, pedigree data from 12,008 
German Holstein animals was analysed and used to test the efficiency of the program.  
The concept of reducing the size of G  was proposed by MEUWISSEN and 
GODDARD (1996) for multiple markers: parents and offspring sharing the same 
marker haplotype were both assigned the same gametic QTL effect by assuming that 
the probability of double recombination was equal to zero for informative animals 
(transmission probabilities were rounded to 0, 0.5 or 1.0). In reality, marker 
information (and therefore the transmission probability for each marker) is variable 
and may have any value between zero and one; the values approach zero or one for 
more informative markers (LIU and MATHUR, 2005). The condensing algorithm 
presented by TUCHSCHERER et al. (2004) leads to the same result as the reducing 
algorithm when transmission probabilities of one and zero occur and no recombination 
takes place. However, the condensing algorithm uses the original transmission 
probabilities instead of rounded ones. If transmission probabilities very close to one or 
zero occur, a predefined threshold (e.g. ε=0.03) can be entered in COBRA, causing all 
transmission probabilities below 0.03 to be treated as zero and all those above 0.97 to 
be treated as one. This further condenses *G  and 1*−G  and provides similar results to 
those of MEUWISSEN and GODDARD (1996). 
Economising on the calculation of elements in rows and columns related to gametes 
without offspring can reduce the number of non-zero elements in *G  significantly (i.e. 
minimal computation of non-parental gametic effects). The fill density and the number 
of non-zero elements with (2.47%, 4,567,164 elements) and without (21.31%, 
39,430,374) economising on non-parental gametic effects ( *

aG ) for the pedigree 
described in section 4 underlines the significance of this method with regard to matrix 
size .   
The distribution pattern of non-zero elements in *

aG  is presented in Fig.  2, where the 
upper triangular matrix shows the distribution pattern of non-zero elements in *

aG . 
Each non-zero element in the matrix is represented by a single dot; the matrix may 
appear darker than in reality due to low print resolution. 
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Fig. 2: Distribution pattern of non-zero elements in *

aG  (upper triangular matrix); non-zero elements are only 
calculated for animals with progeny. Empty columns contain inbreeding coefficients of animals without progeny, 
visible as a diagonal trace of non-zero elements in the circle. (Verteilungs-Muster der Nicht-Nullelemente in 

*
aG  (obere-Dreiecksmatrix), d.h. ohne die Berechnung von Nicht-Nullelementen für Tiere ohne Nachkommen, 

leere Spalten enthalten Inzuchtkoeffizienten von Tieren ohne Nachkommen, sichtbar als diagonale Spur von 
Nicht-Nullelementen innerhalb des Kreises) 
 
The circle in Fig. 2 draws attention to a faint arrangement of ‘irregular’ dots in the 
otherwise regular checked-pattern visible in *

aG . These irregular elements are 
computed when certain constituents of economised columns are required for other 
calculations, such as those required for inbreeding coefficients of animals without 
unique gametes.   
In order to successfully incorporate MQTL information in the BLUP breeding value 
estimation model, the marker genotype information of as many animals as possible is 
required. Fig. 1 shows that the vast majority of gametes occurred only once in the 
pedigree (93.59%), however transmission probabilities for marker genotypes were 
only included for 6,520 of 12,008 animals. The average gamete occurrence would 
likely increase if the missing genotype information, especially for bull dams, was 
included.  
The efficient calculation of G  and 1−G  is imperative if marker data are to be 
practically used in genetic evaluation models. The computational techniques proposed 
by ABDEL-AZIM and FREEMAN (2001) for constructing the inverse are efficient, 
however the condensing algorithm proposed by TUCHSCHERER et al. (2004) is not 
included. The relatively uncomplicated programming methods for the calculation of 

*G  and 1*−G  described in this article prove adequate for medium sized pedigrees with 
simple structure. However, computation time required may be too high for the 
calculation of larger pedigrees (>100,000 animals) or pedigrees with a more complex 
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constitution. Computation time may therefore be improved in later versions of the 
COBRA program. 
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APPENDIX A 
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