Arch. Tierz., Dummerstorf 50 (2007) 1, 112-113

Laboratory of Molecular Cytogenetics, Faculty of Biotechnology and Animal Science, Agriculture University, Doktora Judyma 12, 71-466 Szczecin, Poland

ANDRZEJ DYBUS

Two new PCR-RFLPs in the domestic pigeon (*Columba livia* var. *domestica*) lactate dehydrogenase A (*LDH-A*) gene (Brief report) (Zwei neue PCR-RFLPs des Laktat-Dehydrogenase A (*LDH-A*) Gens bei der domestizierten Taube (*Columba livia* var. *domestica*))

Background: Traditional selection of racing pigeons has been focusing on spatial orientation, velocity, and endurance of flight. *LDHA* gene is involved in aerobic and anaerobic metabolism of the muscle tissue (VAN HALL et al., 1999). Mutations in the *LDHA* gene can potentially diversify the homing performance of racing pigeons. Previously, two polymorphic sites of *LDHA* gene have been identified (DYBUS and KMIEĆ, 2002, DYBUS et al., 2006).

Procedures:

Primer sequences:

LDHA45F 5'-AACGACAAGAGCAACGTGAAG-3' LDHA45R 5'-CAAGAGCCCATTTCACCTACA-3'

DNA was isolated from blood samples of 145 domestic pigeons (68 homing of 14 lofts, 77 non-homing of 4 lofts) using $MasterPure^{TM}$ kit (Epicentre Technologies). The PCR-RFLP method was used for detecting polymorphisms. Therefore, PCR primers were designed to produce 1112 base pair amplification product, encompassing a part of exons 4 and 5 with intervening intron, using Primer3 software. The PCR mixture contained 60 ng of genomic DNA, 0.1 μ M of each primer, 1xPCR buffer, 1.5 mM MgCl₂, 200 μ M dNTP and 0.3 units Taq-polymerase (Eur_X) in a total volume of 15 μ l. The following cycles were applied: 94°C/5 min, followed by 33 cycles at 94°C/30 sec, 60 °C/40 sec, 72 °C/90 sec, and final synthesis at 72 °C/5 min. Amplified DNA samples were digested with ApoI, BsuRI, HinfI, MspI, MvaI, PvuII, RsaI, VspI and TaiI restriction endonucleases. The digestion products were separated by horizontal electrophoresis through 2-4% agarose gels. Any observed variations of restriction patterns were characterized further and confirmed by sequence analysis using on an ABI Prism Sequencer (Perkin-Elmer) and Chromas software. Distribution frequencies of genotypes and haplotypes were compared using χ^2 test (Fisher's Exact Test).

Results: In case of *Hinf*I and *Tai*I enzymes RFLP were observed (Figure). Molecular basis of *LDHA/Hinf*I and *Tai*I polymorphisms were T/G (at position 675) and A/G (at position 252) substitutions in intron 4 of LDHA gene, respectively. In case of *LDHA/Hinf*I polymorphism frequencies of genotypes in the homing and non-homing group of pigeons were similar (χ^2 =1.89). (Table 1). Statistical significant differences between homing and non-homing pigeons were observed in genotypes frequencies for *LDHA/Tai*I polymorphism (χ^2 =20.54) and also haplotypes frequencies (χ^2 =29.41) (Table 2).

The higher frequency of *LDHA/Tai*I^A detected in the group of homing pigeons and its effect on homing performance should be verified in further, more advanced studies.

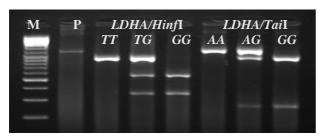


Figure: Representative results of *LDHA/Hinf*I and *LDHA/Tai*I analysis

(P: PCR product, M: DNA Ladder Plus MBI Fermentas)

Table 1 Frequencies of *LDHA/Hinf*I and *LDHA/Tai*I genotypes

Polymorphism	Group of pigeons	n	Genotype frequency			
LDHA/HinfI	non-homing	77	0.247 TT (n=19)	0.376 TG (n=29)	0.376 GG (n=29)	
	homing	68	0.368 TT (n=25)	0.294 TG (n=20)	0.338GG (n=23)	
LDHA/TaiI	non-homing	77	-	0.065 AG** (n=5)	0.935 GG (n=72)	
	homing	68	0.044 AA (n=3)	0.324 AG** (n=22)	0.632 GG (n=43)	

^{** -} $P \le 0.01$, * - $P \le 0.05$.

Table 2 Frequencies of *LDHA/Hinf*I-*Tai*I haplotypes

Group	n	Haplotype frequencies (<i>HinfI-TaiI</i>)							
		TT/GG	TG/AG	TG/GG	GG/AA	GG/AG	GG/GG		
Н	68	0.368	0.176**	0.118*	0.044	0.147	0.147*		
	08	(n=25)	(n=12)	(n=8)	(n=3)	(n=10)	(n=10)		
N-H	77	0.247	0.013**	0.364*	-	0.052	0.324*		
		(n=19)	(n=1)	(n=28)	-	(n=4)	(n=25)		

^{** -} $P \le 0.01$, * - $P \le 0.05$; H – homing; N-H- non-homing

Acknowledgements: The sequencing was done at the Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland.

References

DYBUS, A.; KMIEĆ, M.:

PCR-RFLPs within the lactate dehydrogenase (*LDH-A*) gene of the domestic pigeon (*Columba livia* var. *domestica*). J. Appl. Genet. **43** (2002), 501-504

DYBUS, A.; PIJANKA, J.; CHENG, Y.H.; SHEEN, F.; GRZESIAK, W.; MUSZYNSKA, M.:

Polymorphism within the *LDHA* gene in the homing and non-homing pigeons. J. Appl. Genet. **47** (2006), 63-66

VAN HALL, G.; GONZALEZ-ALONSO, J.; SACCHETTI, M.; SALTIN, B.;

Skeletal muscle substrate metabolism during exercise; methodological considerations. Proc. Nutr. Soc. **58** (1999), 899-912

Received: 2006-07-19 Accepted: 2006-09-11

Correspondence to ANDRZEJ DYBUS, E-Mail: andrzej.dybus@biot.ar.szczecin.pl