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Abstract 
A computing simplification was applied to marker-assisted genetic evaluation of quantitative traits including 
additive and non-additive effects of QTL as well as residual polygenic effects. Different situations including 
QTL and the residual polygenic effect estimated as a sum or separately, and with or without non-additive effects 
integrated in models were evaluated. The computing simplification was used in combinations with different 
models and parameterizations. An example data was adopted to illustrate the simplified computing strategy and 
was compared with the computing method of direct inversion. Identical results were obtained from both 
computing strategies. The main advantage of the simplification is that it does not require inversion of non-
additive relationship matrices and relationship matrices of QTL, and the number of random effects in mixed 
model equations is the same as any animal model with only additive effects. 
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Zusammenfassung 
Titel der Arbeit: Vereinfachungen der markerunterstützten Zuchtwertschätzung und Erfassung nicht-
additiver Interaktionseffekte 
Eine computerunterstützte Vereinfachung der Marker-gestützten genetischen Evaluierung quantitativer Merk-
male einschließlich additiver und nicht-additiver Effekte von QTL sowie polygener Restvarianz wurde angewen-
det. Verschiedene Situationen mit QTL und polygenen Effekten wurden in ihrer Summe betrachtet oder separat 
sowie mit oder ohne nicht-additive Effekte integriert in den Modellen ausgewertet. Die rechnerische Vereinfa-
chung wurde in den Kombinationen mit unterschiedlichen Modellen und Parametrisierungen verwendet. Bei-
spieldaten wurden angenommen, um die vereinfachte rechnerische Strategie zu veranschaulichen, und wurden 
mit der Methode der direkten Inversion verglichen. Identische Resultate konnten von beiden rechnerischen 
Strategien erreicht werden. Der Vorteil der Vereinfachung ist, dass sie eine Inversion der 
Verwandtschaftsmatrizen für nicht-additive und QTL Effekte nicht erfordert. Die Zahl zufälliger Effekte in den 
Gleichungen der gemischten Modelle ist identisch mit nur additiven Effekten im Tiermodell.   
 
Schlüsselwörter: Molekulare Marker, gametische Modelle, QTL, Nicht-additive Effekte, rechnerische Vereinfa-
chung 
 
 

Introduction 
In linear model genetic evaluations, the independent variables are usually results in a 
probability distribution of QTL genotype rather than a specific genotype. Estimation of 
QTL effects in a linear model requires the use of uncertain QTL genotypes as 
independent variables. Three types of linear models are often used for the estimation: 
(1) Mixture model: This type of model is based on a mixture of QTL genotypic 
distributions. It was proposed by LANDER and BOTSTEIN (1989) for QTL interval 
mapping and was a direct solution for this kind of evaluation. (2) Regression model: 
The model was proposed by HALEY and KNOTT (1992). It takes the expectation of 
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QTL genotype as covariates of the linear model, and therefore it is an approximation 
to avoid the complicity of mixture model analysis. (3) Gametic model: This model 
takes QTL covariates as random effects and uses marker information to quantify the 
similarities between the random allelic QTL effects of different individuals in the 
population. It was proposed by FERNANDO and GROSSMAN (1989) and has been 
used very widely. The uncertainty of QTL covariates is eliminated by assuming that 
the number of QTL alleles in the population is infinite or that each animal carries 
distinct and unique QTL alleles. The gametic model has an advantage for animal data 
that it can easily integrate pedigree records and marker information in the data analysis 
and make good use of relatedness among relatives due to sharing identical QTL alleles 
by descent. The gametic model has been applied to both the marker-assisted genetic 
evaluation for commercial breeding programs (DEKKERS, 2004) and QTL mapping 
practice in livestock populations (e.g. GRIGNOLA et al., 1996; ZHANG et al., 1998; 
FREYER et al., 2002, 2003). 
Since the gametic model method was proposed, a series of studies has been focused on 
the method of reducing the number of mixed model equations in marker-assisted 
genetic evaluations. When only one QTL is considered, mixed model equations for 
estimating QTL effects and residual polygenic effects need three equations for each 
animal in addition to fixed effects. In case of q QTL, 12 +q  equations have to be 
evaluated for each animal. CANTET and SMITH (1991) proposed a reduced animal 
model to reduce the number of equations by absorbing QTL effects of non-parents into 
QTL effects of parents. HOSCHELE (1993) showed that QTL equations are not 
needed for animals that are not marker genotyped and do not provide relationship ties 
among genotyped descendants. Therefore, the number of equations for reduced animal 
model allows being further reduced by eliminating QTL effect equations of these 
animals. VAN ARENDONK et al. (1994) developed a method to estimate directly the 
sum of the QTL allelic effects and residual polygenic effects for the purpose of genetic 
evaluation and reduced the number of mixed model equations to one for each animal. 
SAITO and IWAISAKI (1996a, 1997) showed how the approach by VAN 
ARENDONK et al. (1994) allows further simplifying the computation if it is 
combined with the computing simplification of CANTET et al.’s reduced animal 
model (1991) and the idea of HOSCHELE (1993). The method of VAN ARENDONK 
et. al. (1994) is a very efficient way for simplifying the computations, providet 
estimating total additive genetic value is the purpose of the analysis. However, the 
method does not give estimates of QTL effects even they are required (SAITO and 
IWAISAKI, 1996b).  
In marker-assisted estimation of QTL effects, diverse statistical models can be needed 
for different purposes of the data analyses. Modeling QTL effects separately from 
polygenic effects are often necessary in some cases. For example, the estimates of 
QTL effects are useful for making livestock mating plan, in which characteristics of 
each animal may be of reference value.  
A series of experiments in poultry (MATHUR and HORST, 1992; MATHUR and 
HORST, 1994; HORST et al., 1996) have demonstrated substantial non-additive 
effects of major genes. Similar non-additive effects can be expected from QTL and 
candidate genes as well. For some other species such as swine and beef cattle, QTL 
position estimation is generally based on the crossbred populations originated from 
breeds that are substantially different. Including non-additive effects in the model will 
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allow more accurate estimation of QTL effects and positions. The genetic evaluation 
of livestock is usually based on the animal model of additive effects, in which the non-
additive effects could contribute partially to breeding values. Fitting non-additive 
effects of QTL and residual polygenes in the model allows removing the unstably 
inheritable effects from estimates of breeding values and improving the accuracy of 
the estimates. Estimation of non-additive effects can be especially important for meat 
animals when the main objective of selection in purebreds is to improve the 
performance in commercial crossbred populations.  
In this study, the strategy of computing simplification (SCHAEFFER, 2003) was 
applied to marker-based QTL analysis of different models with and without non-
additive effects of QTL and polygenes, and including QTL effects and the residual 
polygenic effect estimated as a sum or separately. Example data were adopted to 
illustrate marker-assisted QTL effect estimations and polygenic effect evaluations 
combined with different models.  
 
 

Theories 
Notations for genetic effects  
Considering a single QTL, the maternal and paternal allelic effects of an animal are 
denoted as  and . The additive and dominance effects at the QTL are denoted as 

and . The relationship matrices for QTL allelic effects, and additive and 
dominance effects are denoted as G ,  and . The additive and dominance effects 
of residual polygenes (excluding the QTL effects considered) are expressed as and 

 and their relationship matrices as  and , respectively. The total additive and 
dominance effects of an animal, the sum of QTL effect with polygenic effect are 
denoted as and  with relationship matrices as  and .  The additive and 
dominance effects of animals are expressed as a  and  as defined by FALCONER 
and MACKAY (1996) and commonly used in conventional animal models without 
marker information. Their relationship matrices are  and , the same as those for 

and . 
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Gametic model of QTL effects 
The single-QTL-locus gametic model can be described as  

m p
i i 0i i iy x 'β a v v e= + + + + i                                                             

where  is the phenotypic observation of individual i ; are gametic effects at 
the QTL and  is the  residual polygenic effect of individual i  and β  is fixed effect 
vector.  is the model residual. In matrix notation, the model becomes 

iy p
i

m
i vv  and 

ia0

ie
eWvZaXβy +++= 0                                                                      (Gametic Model) 

where, . ZMW = 1)   1(⊗= NIM . Here,  is an identity matrix of dimension equal to 
the number of individuals to be evaluated ( ) and 

NI
N ⊗  stands for Kronecker product. 
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where  is numerator relationship matrix. G  is the gametic relationship matrix at 
QTL and can be calculated conditional on linked marker and pedigree information 
(WANG et al., 1995; LIU et al., 2002). G  for a QTL locus has dimension of 

A

NN 22 × . 
For the gametic model, the mixed model equations (MME) can be very large in 
comparison with the conventional animal model. The number of equations for gametic 
effects is twice as the number of animals to be estimated for each QTL.  
 
Additive model of QTL effects 
To simplify the computation, the gametic effects at a QTL can be merged into the QTL 
additive effect, that is  

    m
i

p
ii vva +=0

for individual i . It can be expressed as Mva =q  in matrix notation. The variance of  is 
equal to  
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Since '2
1 MGMA =q . The  here can be converted from gametic relationship 

matrixG using the formula 
qA

2
 ,    ,   ,    ,  21)-2(j2)1(211)-2(j2)1(2 21)-2(j1)1(211)-2(j1)1(2 ++−++−++−++− +++

= iiii
ij
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according to LIU et al. (2002), where  is  an element of  at row i  column , and 
 is the element of G at row 

ijr qA j

2)1(2,1)1(2 +−+− jig 1)1(2 +−i  column 2)1(2 +−j ,  the identical-
by-descent probability of the individual i ’s first allele with individual ’s second 
allele. 

j

In this way, the gametic model above becomes an additive model of QTL effects, 
eaZaZXβy +++= q  0                                                   (Additive Model 1) 

with the covariance structure being   
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For the purpose of genetic evaluation, Additive Model 1 can be further simplified by 
merging residual polygenic effects and QTL additive effects into the total additive 
genetic effects, i.e. . The model becomes   qt aaa += 0

eaZXβy ++= t                                                                  (Additive Model 2) 

with the variance-covariance structure as 
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This is the model proposed by VAN ARENDONK et al. (1994) for marker-assisted 
genetic evaluation. Here, 
 

222
a 0t qaqat σσσ AAA += . 

The additive relationship matrix of  is ta
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In this way, the number of MME for marker-assisted genetic evaluation reduces to be 
equal to the number of animals to be evaluated. Comparing with mixed model 
equations for the conventional animal model, the difference is at matrix , which is an 
average of  and  weighted by the sizes of variance components  and .   
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Dominance Model of QTL effects 
The model with dominance QTL effects can be derived from HENDERSON (1985) as 

edadaZXby +++++= )  ( 00 qq                                        (Dominance Model 1) 
where and  stand for additive and dominance effects of residual polygenes while  
and  for additive and dominance effects at QTL q . The variance-covariance 
structure is assumed to be   
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Here,  is a dominance relationship matrix for residual polygenic effects, calculated 
based on pedigree information only. Matrix D  can be converted from average gametic 
relationship matrix (SMITH and MAKI-TANILA, 1990). Similarly, dominance 
relationship matrix  at QTL  can be calculated from gametic relationship matrix 

of the same QTL, which is calculated conditional on marker and pedigree 
information (WANG et al., 1995; LIU et al., 2002). The element of  at row  and 
column  can be calculated based on G  using formula  

D

qD q
G
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 21)-2(j1)1(211)-2(j2)1(2 21)-2(j2)1(211)-2(j1)1(2  ,    ,   ,    , ++−++−++−++− ×+× iiii gggg .                          (3) 
 
For genetic evaluation, residual polygenic effects and QTL effects can be merged into 
total genetic effects, i.e. the total additive effect and the total dominance effect:    

qt aaa += 0  and . qt ddd += 0

Dominance Model 1 becomes   
edaZXβy +++= )( tt                                                      (Dominance Model 2) 

with variance-covariance structure as 
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for the total additive genetic effect and the total dominance genetic effect, respectively.  
 
Computing simplifications 
Incorporating the QTL effects in the linear model leads to considerable increases in the 
size of mixed model equations requiring substantial computer resporces and 
computing time. Therefore, Some method for computing simplification becomes 
necessary.  
The transformation of gametic effects at QTL into additive effects makes it possible to 
use computing simplification developed by SCHAEFFER (2003) for solving mixed 
model equations when there are more than one random effects in the data analysis. The 
method can be extended to the case of QTL effect estimation. For Additive Model 1, 
the corresponding mixed model equations are 
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Therefore, an iterative procedure can be applied, instead of solving equations (5) 
directly. The iteration begins with setting the starting values for , and such as to 
null vectors, then follows the steps as follows: 

β 0a qa

1. Calculating the corrected observations based on the current estimates of QTL 
additive effects 

q
c aZyy ˆ −=     

2. Solving the following reduced mixed model equations for estimates of β  and  
from the corrected observation vector  
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3. Estimating  from equation (6).  qâ
4. Starting back at step 1 if the estimates do not converge.  
The converged values are the estimates of β ,  and . This computing strategy can 
avoid inverting . The set of equations to be solved is small and contains only 
residual polygenic effects. It is especially advantageous when multiple QTL and non-
additive effects are considered simultaneously.  
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For Dominance Model 1, solving the following mixed model equations 
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can be replaced with the iteration of solving β and  from the equations (7) and 
calculating  
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based on the solution from equations (7), where the corrected observation is  cy
)ˆˆˆ( 0 qq
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In mixed model equations (8), 
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Accordingly, the iterative procedure for Dominance Model 2 includes solving  from 
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where , and estimating  from formula t
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Here, 
taλ  in equation (9) is 22

tae σσ  and depends on heritability.  
 

Numerical example 
The example data including pedigree, marker genotypes and phenotypic observations 
as given in Table 1 were adopted to illustrate the methods described in the section of 
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Theories. A QTL was assumed to be known and linked to a molecular marker with a 
recombination rate of  0.1. The heritability of the trait was assumed to be 0.35. The 
variance component, expressed in proportion of phenotypic variation, was assumed to 
be 0.25 for the residual polygenic additive effect ( ), 0.1 for the additive effect at 
the QTL ( ), 0.075 for the dominance effect of residual polygenes ( ) and 0.025 
for the dominance effect at the QTL ( ). The variance ratio of gametic effects to 
phenotypic variance was 0.05 ( ), equal to a half of . The parents of individuals 1 
and 2 are unknown. These two individuals were assumed to be unrelated and non-
inbred.  

2
0aσ

2
qaσ 2

0dσ
2

qdσ
2
vσ 2

qaσ

 
Table 1 
Example data including pedigree, marker genotypes and phenotypic observations (Beispieldaten mit Pedigree, 
Markergenotypen sowie phänotypischen Beobachtungen) 

Animal Sire Dam Marker genotype Phenotypic observation 

1 - - 12 80 
2 - - 34 120 
3 1 2 13 90 
4 1 2 23 110 
5 3 4 33 115 
6 5 4 32 95 

 
 
Table 2 
Gametic relationship matrix at the QTL (upper diagonal) and that for polygenic effects (lower diagonal) 
(Gametische Verwandtschaftsmatrix für QTL (oberhalb der Diagonale) und polygene Effekte (unterhalb der 
Diagonale)) 

 11 12 21 22 31 32 41 42 51 52 61 62 

11 1 0 0 0 0.9 0 0.1 0 0.09 0.01 0.05 0.09 
12 0 1 0 0 0.1 0 0.9 0 0.01 0.09 0.05 0.81 

21 0 0 1 0 0 0.9 0 0.9 0.81 0.81 0.81 0.09 
22 0 0 0 1 0 0.1 0 0.1 0.09 0.09 0.09 0.01 

31 0.5 0.5 0 0 1 0 0.18 0 0.1 0.018 0.059 0.162 
32 0 0 0.5 0.5 0 1 0 0.82 0.9 0.738 0.819 0.082 

41 0.5 0.5 0 0 0.5 0 1 0 0.018 0.1 0.059 0.9 
42 0 0 0.5 0.5 0 0.5 0 1 0.738 0.9 0.819 0.1 

51 0.25 0.25 0.25 0.25 0.5 0.5 0.25 0.25 1 0.66 0.833 0.09 
52 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.25 1 0.833 0.18 

61 0.25 0.25 0.25 0.25 0.375 0.375 0.375 0.375 0.625 0.625 1 0.135 
62 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.5 0.25 0.5 0.375 1 
 
The gametic relationship matrix for the QTL was calculated based on the method of 
WANG et al. (1995) and listed in upper diagonal area of Table 2. The average gametic 
relationship matrix for polygenes was based on SMITH and MAKI-TANILA (1990) 
and shown in the lower diagonal of Table 2. The additive relationship matrices were 
calculated based on gametic relationship matrices using the formula (1) and listed in 
Table 3, in which the additive relationship matrix at the QTL was in upper diagonal 
and the additive relationship matrix of  polygenic effects was in lower diagonal area. 
The dominance relationship matrices were estimated from gametic relationship 
matrices based on formula (3). The dominance relationship matrix at the QTL and the 



 
LIU; MATHUR: Simplifications of marker-assisted genetic evaluation and accounting for non-additive interaction effects 

468

dominance relationship matrix of polygenic effects were shown in upper and lower 
diagonals of Table 4, respectively. The diagonal elements were listed separately in the 
Tables. 
 
Table 3  
Additive relationship matrix at the QTL (upper diagonal) and that for polygenic additive effects (lower diagonal) 
(Verwandtschaftsmatrix für additive QTL (oberhalb der Diagonale) und polygene additive Effekte (unterhalb der 
Diagonale)) 

  Diagonal  Off-diagonal 
  QTL polygene  1 2 3 4 5 6 

1  1 1   0 0.5 0.5 0.1 0.5 
2  1 1  0  0.5 0.5 0.9 0.5 
3  1 1  0.5 0.5  0.5 0.878 0.561 
4  1 1  0.5 0.5 0.5  0.878 0.939 
5  1.666 1.25  0.5 0.5 0.75 0.75  0.968 
6  1.135 1.375  0.5 0.5 0.625 0.875 1  

 
 
Table 4  
Dominance relationship matrix at the QTL (upper diagonal) and that for polygenic dominance effects (lower 
diagonal) (Verwandtschaftsmatrix für Dominanzeffekte des QTL (oberhalb der Diagonale) und polygene 
Dominanzeffekte (unterhalb der Diagonale)) 

  Diagonal  Off-diagonal 
  QTL polygene  1 2 3 4 5 6 

1  1 1   0 0 0 0.008 0.045 
2  1 1  0  0 0 0.146 0.016 
3  1 1  0 0  0.148 0.09 0.138 
4  1 1  0 0 0.25  0.09 0.743 
5  1.444 1.063  0.125 0.125 0.25 0.25  0.225 
6  1.018 1.141  0.125 0.125 0.188 0.375 0.469  

 
Seven models have been evaluated and compared using the example data. Two models 
are the conventional animal models without using marker information. Animal Model 1 
included only additive genetic effects of animals, i.e.  

eZaXby ++=  
and Animal Model 2 included both additive and dominance genetic effects of animals, 
i.e. 

edaZXby +++= ) (  
as conventionally defined in the literature of animal genetic. Five models with marker 
information integrated for inferring QTL effects are as described in the section of 
Theories, including Gametic Model, Additive Model 1, Additive Model 2, Dominance 
Model 1 and Dominance Model 2. The symbols for genetic effects are as defined in the 
section of Notations for genetic effects. The model residual was assumed to be 
independently, identically and normally distributed, for all models considered here.  
All the models were analyzed using direct inverse procedure in solving mixed model 
equations. The computing procedure based on Schaeffer’s simplification was applied to 
Additive Model 1, Dominance Model 1 and 2, and Animal Model 2 since these models 
included two or more random factors. The results from evaluations of the models 
without dominance effects were listed in Table 5, and those from evaluation of the 
models with dominance effects were shown in Table 6. The result shows that the 
computing simplification provides the same results as those from direct inverse 
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solutions. The number of iterations to converge was 6, 6, 9 and 6 for Additive Model 1, 
Animal Model 2, and Dominance Model 1 and 2, respectively. 
 
Table 5 
The results from genetic evaluations using Animal Model 1, Gametic Model, Additive Model 1 and Additive 
Model 2 (Ergebnisse genetischer Evaluierung mit dem Tiermodell 1, gametischem Modell, additiven Modell 1 
und 2)) 

Animal  
Model  1 

 
Gametic Model 

Additive 
Model 1 

Additive 
Model 2 

 
 

Animal â  0â  1v̂  2v̂  qâ  tâ  0â  qâ  tâ  tâ  

1 -7.778 -5.360 -1.798 -1.052 -2.850 -8.209 -5.360 -2.850 -8.209 -8.209 

2 7.778 5.360 1.751 1.099 2.850 8.209 5.360 2.850 8.209 8.209 

3 -1.700 -1.322 -1.861 1.633 -0.228 -1.549 -1.322 -0.228 -1.549 -1.549 

4 2.321 1.596 -1.096 1.885 0.789 2.385 1.596 0.789 2.385 2.385 

5 2.814 1.609 1.390 1.693 3.083 4.692 1.609 3.083 4.692 4.692 

6 0.707 0.318 1.443 -0.904 0.539 0.857 0.318 0.539 0.857 0.857 

           

µ̂  100.976     100.603   100.603 100.603 

MSE  100.33     90.97   90.97 90.97 
 
 
Table 6 
The results from genetic evaluations using Animal Model 2, Dominance Model 1 and Dominance Model 2  
(Ergebnisse genetischer Evaluierung mit dem Tiermodell 2 und Dominanzmodell 1 und 2)) 

Animal 
Model 2 

Dominance 
Model 1 

Dominance 
Model 2 

 
 

Animal â  d̂  0â  qâ  
0d̂  qd̂  tâ  

td̂  tâ  
td̂  

1 -7.000 -2.069 -4.833 -2.572 -1.481 -0.518 -7.404 -1.999 -7.404 -1.999 

2 7.000 1.931 4.833 2.572 1.418 0.511 7.404 1.929 7.404 1.929 

3 -1.545 -0.996 -1.195 -0.203 -0.742 -0.328 -1.398 -1.070 -1.398 -1.070 

4 2.104 0.780 1.456 0.717 0.605 0.075 2.172 0.680 2.172 0.680 

5 2.540 1.301 1.441 2.785 0.813 0.571 4.226 1.383 4.226 1.383 

6 0.592 -0.325 0.248 0.482 -0.270 -0.035 0.731 -0.306 0.731 -0.306 
           

µ̂   100.95      100.61  100.61 

MSE   82.53      74.88  74.88 
 
The marker-assisted evaluations in Gametic Model,  and Additive Model 1 and 2 lead 

to smaller mean square errors (MSE, calculated as ∑ − 2)ˆ(1 yy
N

) than Animal Model 1 

(Table 5). Dominance Model 1 and 2 also give smaller mean square errors than Animal 
Model 2 (Table 6). The breeding values estimated from Additive Model 1 and 2 are 
exactly identical to those from Gametic Model. They are equivalent models. However, 
the gametic model required more computing time. The Additive Model 2 needs the 
shortest computing time. Therefore, Additive Model 2 is a good choice when QTL 
effects do not need to be estimated while Additive Model 1 is the choice when both 
QTL effects and total genetic merit are of interest. Similarly, Dominance Model 2 gave 
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the same results as Dominance Model 1, but demanded less computing time. The Table 
6 shows that fitting dominance effects in addition to additive effects made the models 
have a better fit to the data. Including dominance effects in the conventional animal 
model reduced MSE from 100.33 to 82.53 while MSE was decreased from 90.97 to 
74.88 when fitting dominance effects in the models with QTL effects. Dominance 
Model 1 could be used for the analysis of QTL effect estimations, and Dominance 
Model 2 may be applied to marker-assisted genetic evaluation and allows a cleaner 
estimation of breeding values.  
 
 

  Discussion 
After FERNANDO and GROSSMAN (1989) proposed the gametic model BLUP 
method for marker-assisted genetic evaluation, several methods have been developed 
for simplifying the computations of the marker-assisted genetic evaluation and 
reducing the number of mixed model equations for the evaluation. The simplifications 
of CANTET and SMITH (1991) and HOSCHELE (1993) are useful for establishing 
mixed model equations by either expressing the effects of non-parents with their 
parents or for eliminating the QTL effect equations of those animals that are either not 
genotyped or do not provide relationship ties. The simplification of VAN 
ARENDONK et al. (1994) was applied at the stage of parameterization to reduce the 
number of effects to be estimated and therefore the number of mixed model equations. 
In this study, the simplified approach of estimating sum of QTL and polygenic effects 
(VAN ARENDONK et al., 1994) was extended to different effects. The analysis 
shows that the modeling for marker-based analysis can be very flexible and can be of 
different forms according to the purpose of the data analysis. We also adopted 
SCHAEFFER’s computing simplification (2003) into marker-assisted QTL analysis at 
the stage of solving mixed model equations, in addition to those by CANTET and 
SMITH (1991) and HOSCHELE (1993). It is easy to see that all four simplifications 
above can be applied in different combinations. However, SCHAEFFER’s 
simplification (2003) is especially useful when multiple random factors exist in the 
analysis and when various QTL effects, additive and non-additive, need to be estimated 
aside from those for residual polygenes. 
To keep simple the presentation, only additive effects and dominance effects of a single 
QTL were included in the section of Theories and in the analysis of the example data. 
However, the principle described in this study can be extended straightforward to 
include epistatic effects of multiple QTL. Table 7 gives a more general summary for 
the variances and relationship matrices of different genetic effects including additive, 
dominance, and epistatic effects of multiple QTL expressed as sums of QTL effects 
and the corresponding residual polygenic effects. Different QTL effects, additive or 
non-additive, can also be estimated based on the results in Table 7 separately from 
residual polygenic effects, depending upon the purpose of the data analysis. 
Traditionally, the epistatic effect is classified into additive by additive, additive by 
dominance and dominance by dominance effects (COCKERHAM, 1954) since it is not 
possible to distinguish the additive by dominance effect from the dominance by 
additive effect for polygenes without observation of individual loci. However, these are 
distinguishable for epistatic interactions between QTL loci. The additive by dominance 
is generally different from dominance by additive effects for QTL, though they can be 
put  together to simplify the computation as it is the case in Table 7. Consider a pair of 



  

 
 
 
Table 7  
Variance matrices and relationship matrices for the total genetic effects as a sum of QTL effects and residual polygenic effects (Varianz- und Verwandtschaftsmatrix für 
die genetischen Effekte als Summe der QTL-Effekte und polygenen Effekte)) 
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* Symbol # here stands for Hadamard product and  for total number of QTLs considered. , , , , and stand for the total additive, dominance, 
additive-by-additive, additive-by-dominance, dominance-by-additive and dominance-by-dominance effects 
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QTL, and q p  as an example. Apparently, the interaction between additive at q and 
dominance at p is different from that between dominance at q and additive at p . It is 
important to realize this difference even in case the sum of different epistatic effects is 
estimated as shown in Table 7, because  is generally not equal to  and 

is not equal to . 
pq DA # pq AD #

2
pqdaσ 2

pqadσ

Many studies showed that use of marker information allows increasing the accuracy of  
genetic evaluation resulting into more the genetic progress (ZHANG and SMITH, 1992; 
GIMELFARB and LANDE, 1994; RUANE and COLLEAU, 1995). The analysis of the 
example data in this study also indicates that integrating marker information helps in 
fitting and appropriate model to the data. The advantage of using marker information in 
genetic evaluation can be explained by the nature of relationship matrices. The 
conventional numerator relationship matrix  and dominance relationship  are 
calculated based on pedigree information only. The gene transmission probability is 
generally taken as 0.5, which is corresponding to maximum uncertainty about gene 
transmission under known pedigree. In reality, the transmission of an allele from a 
parent to an offspring follows an all-or-none pattern. Relationship matrices at QTL,  
and are calculated based on both pedigree and marker information. With 
information from molecular markers, it becomes possible to track QTL allelic 
transmission more accurately than with pedigree information alone. The transmission 
probability of QTL alleles given marker information approaches one or zero from 0.5, 
with increases of the informativeness of molecular markers. Therefore,  and are 
more accurate estimates of correlations between random genetic effects. LIU et al. 
(2002) showed that is equal to   when markers are assumed to be completely non-
informative. Therefore, it can be seen from formulae (2) and (4) that  when  
is equal to  and therefore, . So, the bottom line for marker-assisted genetic 
evaluation using the discussed models is that, on average, marker-assisted genetic 
evaluation is at least as good as the conventional animal model evaluation without 
marker information, if there are no errors in the parameters used (e.g. QTL location 
estimates) and no mistakes in marker genotyping. In actual marker-assisted genetic 
evaluation, the situation can vary due to different factors such as inaccuracy of QTL 
position estimates, sampling errors etc.. However, these are not the problems of 
marker-assisted genetic evaluation itself, and therefore should not be the reason to 
underestimate the value of marker-assisted selection.  

A D

qA

qD

qA qD

qA A
AA =t qA

A DD =t

Since the marker information is used through relationship matrices in marker-assisted 
genetic evaluation, the model expression for marker assisted genetic evaluation has the 
same form as a conventional animal model aside from that a weighted average of 
relationship matrices are used for the cases of marker assisted genetic evaluation (see 
Additive Model 2). 
The results of the study shows that estimating the sum of QTL effects and residual 
polygenes through using weighted average of relationship matrices will result in the 
same results as those from the gametic model but will considerably simplify the 
computing procedure and reduce computing time. Therefore, the marker-assisted 
genetic evaluation can be replaced with a conventional animal model BLUP procedure 
if the weighted average of numerical relationship matrix ( ) is used in the place of tA
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numerical relationship matrix ( ).  could be replaced with , which depends only 
on heritability. That the conventional animal model BLUP procedure is able to be used 
for marker-assisted genetic evaluation in this way will greatly facilitate the transition 
process from conventional genetic evaluation systems to the systems of marker-assisted 
genetic evaluation in livestock industry. The current genetic evaluation systems can be 
used for marker-assisted genetic evaluation merely by replacing with . 

A 2
taσ 2

aσ

A tA
Various model formulations in this study may also provide potential opportunities for 
improving QTL mapping, in which procedures of variance component estimation based 
on gametic models have often been used so far (e.g. GRIGNOLA et al., 1996; ZHANG 
et al., 1998). This study indicates that the gametic model for QTL mapping can be 
simplified. Replacing QTL gametic effects with QTL additive effects can not only 
simplify the computation because of reducing the number of random QTL effects, but 
also provide a potential way to practise multiple interval mapping of QTL. The 
advantage of multiple interval mapping (MIM) procedure is that it can effectively 
prevent the Ghost QTL phenomenon from happening and increase the accuracy of the 
QTL detection (WEBER et al., 1999; KAO et al., 1999). MIM has been so far applied 
only to fixed model procedure for inbred populations, taking the already positively 
tested QTL as covariate controls when testing a putative QTL of interest (WEBER et 
al., 1999; KAO et al., 1999). This fixed model method is difficult to use in livestock 
due to specific characteristics of livestock population such as uncertain linkage phases 
and incomplete informativeness of markers. Using the results of Table 7, the sums of 
residual polygenic effects with the effects of the already positively tested QTL can be 
included in the model for QTL mapping as a random effect control when a putative 
QTL of interest is being tested. 
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