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Abstract 
Increased herd sizes and narrowed income margins are common characteristics of modern swine farming. 
Therefore good management is becoming more and more important for the economic results. The paper 
describes a computer-based weak-point analysis of individual sow herd performance. Three stages were 
distinguished: (1) Tracing deviations between farm performance and a given standard in order to detect trends in 
the production process. It was shown that modified exponentially weighted moving average control charts are an 
effective tool in detecting small performances shifts. (2) Weighting the deviations by calculating the statistical 
and economic relevance allows the ranking of different traits independent of scales and units. (3) Finding the 
causes for the performance shifts.  Decision tree algorithm was investigated to gain more insight in the critical 
points of production. A decision tree starts with the root node representing the traits which mostly influenced the 
target attribute (critical point), followed by internal nodes. The generated graphical decision trees are transparent 
and the outputs are easy to interpret for the farm manager or the consultant. Methods were applied to simulated 
and real sow herd datasets. 
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Zusammenfassung 
Titel der Arbeit: Computergestützte Schwachstellenanalyse in der Ferkelerzeugung 
Die künftige Ferkelerzeugung ist durch größere Bestände und sinkende Erlöse gekennzeichnet, selbst marginale 
Änderungen im Produktionsprozess wirken sich nachhaltig auf die ökonomischen Ergebnisse der Betriebe aus. 
Daher sind effiziente Kontrollstrategien für das Betriebsmanagement unerlässlich, um Schwachstellen frühzeitig 
zu identifizieren und zu beseitigen. Der vorliegende Beitrag befasst sich mit der Entwicklung einer 
computergestützten Schwachstellenanalyse in der Ferkelerzeugung. Drei Stufen werden unterschieden: (1) 
Identifizierung von Abweichungen im Produktionsverlauf: „Control Charts“ stellen effektive Werkzeuge dar, um 
frühzeitig auch marginale Änderungen im Produktionsprozess aufzuzeigen. (2) Skalierung und Gewichtung der 
Abweichungen: An Beispielen wird demonstriert, wie mit der statistischen und ökonomischen Relevanz der 
Abweichungen die Bedeutung der unterschiedlichen Merkmale rangiert werden kann. (3) Analyse der 
Schwachstellen: Das Entscheidungsbaumverfahren ist ein wirksames Instrument, die Ursachen für die 
Abweichungen aufzuklären. Die einzelnen Elemente des Baumes werden als Wurzel, Äste, Blätter und Knoten 
bezeichnet. Ausgehend von der Wurzel, über die Knoten bis hin zu den Blättern werden Entscheidungsregeln 
aufgelistet und in ihrer Bedeutung gekennzeichnet. Die Methoden wurden an simulierten und realen Datensätzen 
angewendet.  
 
Schlüsselwörter: Schwein, Sau, Managementsysteme, „Control Charts“, Entscheidungsbaumverfahren 
 
 

Introduction 
Commercial swine farming has changed considerably in the last decades. In Germany, 
for instance, the total number of swine breeding farms decreased from 77,000 in 1994 
to 44,000 in 2001 (ZMP, 2003). Within these years, the average number of sows per 
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farm increased, in 1994 40% of sows were kept in herds with more than 100 sows, in 
2001 this portion amounted to 64%. The structural change was accompanied by 
decreasing revenues per unit of output (ZMP, 2003). The total profit of individual 
farms has come to depend more and more on production farm performance. Small 
shifts in farm performance can have a great impact on farmers’ income (KRIETER, 
2002). Therefore the demand for effective management information systems is 
growing with the increasing demands on farmer’s management skills. 
In many farms, information technology enables farmers to collect, treat and process 
farm data  at individual animal level. But in most instances, effective computerised 
tools for tracing deviations from target specification (identification of strong and weak 
elements) and further analysis of deviations finding the underlying causes are not 
available. This paper presents a systematic approach for computer-based farm analysis. 
It can be used for early detection of weak elements and supports the decision making 
of the farmer. 
 
 

  General concept 
Computer-based analysis of individual sow herd performance requires accurate and 
consistent data. These data are normally provided by an information system used on 
the farm. The primary objective of individual farm analysis is to exploit strengths and 
eliminate or improve weak elements. False positive signals for the farmer should be 
minimised and real problems indicated. Further examinations of weak points should 
analyse the underlying causes. Therefore, analysis of individual sow herd performance 
requires a systematic approach (HUIRNE, 1990). 
Process control needs standards for comparisons. If the standards are derived from the 
farm itself the analysis is called internal farm analysis and if several years are 
included, the analysis is called “trend analysis” (HUIRNE, 1990). Standard values are 
the historical performance of the farm or target specification by the management. If 
standards are derived from other (but similar) farms the analysis is called external or 
“comparative analysis” (HUIRNE, 1990), the main objective is to determine the 
relative position of the farm. 
Both internal and external analyses imply three steps: (1) identification of relevant 
deviations, (2) weighting deviations and (3) further analysis of deviations. The 
following chapters present methods and describe how these tools form a cohesive, 
practical framework for individual farm analysis. The presentation here only focuses 
on internal analysis, but methods can be easily extended for external analysis. 
 
 

Identification  of relevant deviations 
In any production process a certain amount of inherent or natural variability always 
exists (Fig. 1a). This natural variability or “background noise” is the effect of many 
small causes. A process that operates with only random variation present is said to be 
in statistical control, the chance causes are an inherent part of the process. Other kinds 
of variability may occasionally be  present in  the output of the process: for instance, 
errors by the staff, unsufficient climatisation. These sources of variability that are not 
part of the chance cause pattern are called “assignable causes”. A process that operates 
in the presence of assignable causes is said to be out-of-control (MONTGOMERY, 
1997). A major objective of process control is to quickly detect the occurrence of 
relevant shifts (deviations) in the process so that investigation of the process and 
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corrective action may be undertaken before problems cumulate. Control charts are an 
on-line processcontrol technique widely used in the industry for this purpose. A typical 
control chart is shown in Figure 1b, which illustrates the pattern of total piglets born 
per litter over a time period of 52 weeks.  

 
 

Fig. 1: Illustration of a control chart (Aufbau eines Control Chart) 
 
The chart contains a center line that represents the target specification of the process. 
Two other horizontal lines, called the upper control limit (UCL) and the lower control 
limit (LCL) are also shown in the chart. These control limits are chosen so that if the 
process is in-control, nearly all of the observations range between them and no 
corrective action is necessary. A shift of the production process outside the control 
limits indicates that the process is out-of-control and investigations are required to 
improve the process. 
Control charts can be found in a number of versions adopted to different monitoring 
and requirements. The Shewhart chart is the oldest and still most frequently applied 
among the control charts. The Shewhart control chart uses only the information 
concerning the last plotted observation ignoring any information given by the entire 
sequence of observations. Therefore the Shewhart chart is relatively insensitive to 
small shifts. There are two very effective alternatives which may be used when small 
deviations are of interest: the cumulative-sum (cusum) controlled chart and the 
exponentially weighted moving-average (EWMA) control chart (MONTGOMERY, 
1997). The cusum charts use the unweighted sum of all previous observations, this 
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chart has a rather long memory. DE VRIES and CONLIN (2003) applied cusum 
control charts to oestrus detection in dairy cows. In EWMA control charts the process 
is monitored using a weighted mean of all previous observations. The weights decline 
exponentially as the observations get older and older. The EWMA was used in the 
present paper. 
Exponentially weighted moving-average (EWMA) control chart 
The EWMA is defined as  
   1)1( −−+= iii zxz λλ   

where λ is a constant satisfying 10 ≤< λ  (MONTGOMERY, 1997), xi represents the 
sequence of independent observations and zi denotes the EWMA statistic at time i. 
EWMA utilises all previous observations, but the weight attached to data declines 
exponentially as the observations get older. If λ = 0.2 then the weight assigned to the 
current mean is 0.2, and weights given to the preceding values are 0.16, 0.128, 0.1024, 
and so forth. 
If the observations xi are independent random variables with variance σ2, then the 
variance of zi is 
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The constant L with L>1determines the width of the control chart. Specifying the 
control limits is one of the critical decisions that must be made in designing a control 
chart. By moving the control limits further from the mean or target value, the risk of 
type I error decreases – that is the risk of an observation falling beyond the control 
limits, indicating an out-of-control condition when no cause is present. However, the 
risk of a type II error increases – that is the risk of an observation falling between the 
control limits when the process is really out-of-control. If the control limit is moved to 
the target specification, the opposite effect is obtained. If data is autocorrelated and the 
limits of the EWMA chart are widened, negative autocorrelation makes the control 
chart very insensitive, positive autocorrelation will result in many false out-of-control 
signals (WIERINGA, 1999). WIERINGA (1999) proposed several methods for 
accounting serial correlation in control charts, one is to modify the EWMA control 
limits with an adopted variance  (for details see WIERINGA, 1999). 
In the EWMA control chart, the control limits depend on λ and L. MONTGOMERY 
(1997) emphasises that in general values of λ in the interval 0.05 ≤ λ ≤ 0.25 and L = 3 
work well in industrial application. The performance of the  control chart can be 
measured by the average time to signal (ATS). The ATS is the average number of time 
periods that occur until a signal is generated. It is desirable for the farmer to have a 
low ATS if the process is out-of-control. To gain more insight into the optimal EWMA 
designs in agriculture production processes without any side-effects,  a simulation 
study was started. 
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Example 1  - simulated datasets  
The trait considered was piglets born in total per litter over a time period of 52 weeks. 
Each week, 100 litters were generated, the number of replications was limited to 100. 
The mean value (center line) of piglets total born was 11.7±2.5. From week 32, a 
negative shift of size 0.1-0.2 σ  in the mean was generated. EWMA control charts were 
derived for weekly subgroups, xi were replaced by x  and σ with σ x  = σ√n in the 
previous equation. The ATS and the false positive rate (FPR, false positive 
signals/n*100) were calculated to evaluate the EWMA designs (Fig. 2).  
 

 
 
Fig. 2: Performance of EWMA control charts depending on smoothing parameter λ, width of  control limits L 
and on the shift in the mean of 0.1σ (ATS = average time to signal, weeks; FPR =  false positive rate, %) 
(Leistungsfähigkeit des EWMA Control Chart in Abhängigkeit von dem Glättungsparameter λ, den 
Kontrollgrenzen L and der Veränderung des Mittelwertes von  0.1σ; ATS = mittlere Zeit bis zum Alarm, 
Wochen; FPR =  Falschpositivrate, %)  
 
If L increased from 1 to 2 the number of false positive signals decreased because the 
LCL moved away from the target value (shift in the mean of 0.1σ), the FPR varied 
between 1 and 14%. ATS ranged from 2 (L=1) to 8 (L=2) weeks because the 
probability of an observation falling beyond the control limits was reduced with higher 
L-values. If λ → 1, the  EWMA placed all of its weight on the most recent 
observations. ATS was slightly reduced and the number of false positive signals 
increased. For the shift in the mean of 0.2 σ ATS declined to 1.5 and 4.7 weeks, the 
FPR was reduced to  0.2 and  9%. 
In conclusion, varying the smoothing parameter has only a slight impact on the ATS 
and FPR. A good rule is to use smaller values of λ to detect smaller shifts. The 
parameter L strongly affects the performance of the EWMA schemes. For the given 
scenarios an L-value of 1.5 diminished the ATS with an acceptable  FPR. 
Example 2 – real datasets 
In example 2 the EWMA control chart was applied to real pig farming datasets from a 
breeding herd with 1,000 sows. The data sets consisted of 4,342 litters over 24 months. 
EWMA control charts were calculated for the number of piglets weaned, the target 
value was 9.8. In Figure 3a, the process fluctuates randomly around the target value. In 
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Figure 3b, the process wanders away form the target specification. The ATS was 8.3 
weeks. In this case, management action would be necessary to improve the process.  
 

 
 
Fig. 3: EWMA control charts with random fluctuation (3a) and shift in the mean (3b), real pig dataset n=4,324 
(EWMA Control Chart  mit zufälliger Variation (3a) und Trend (3b), realer Datensatz) 
 
 

Weighting deviations 
As stated above, all shifts or deviations between actual performance and standards are 
initially assessed in their original dimensions. Additionally, the economic importance 
of one unit deviation will vary between variables, depending on their impact on total 
economic farm importance. By calculating the relevance of deviations (Hurine, 1990) 
all deviations are converted to the same units and comparisons can be made. The 
relevance of a deviation of variable i (RDi ) accounts for the economic (EIi) and 
statistical importance (SIi)   

                                                   || iii SIEIRD ∗=  
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SIi  is the statistical importance of a deviation in variable i and is determined by 
                                                            iii TDSI σ=  

TDi is the traced deviation and σi the standard deviation of variable i. The economic 
importance of a deviation equals the difference between the base and the new value of 
the total economic farm performance. An example, adopted from HUIRNE (1990), is 
given in Table 1. 
 
Table 1 
Relevance  of  deviations  for some variables (HUIRNE, 1990)  (Bedeutung der Abweichungen für ausgewählte 
Merkmale) 
Variable i1) AVi SVi TDi |SIi

 | EIi
2) RDi

2) 
Litters                    pspy   2.01   2.15  0.14 1.40 -44.96 -62.95 
Piglets born alive  pl 10.80 10.67  0.13 0.26    7.75    2.01 
Fe pigs sold          pl   8.86   9.05 -0.19 0.32 -13.35   -4.22 
Pig feed                pp  25.00 29.04 -4.04 1.68  27.08  45.50 
1) pspy = per sow per year, pl = per litter, fe = feeder, pp = per pig  2) Euro 

 
The actual value (AV) of litters per sow per year was 2.01 and standard value (SV) 
2.15. The traced deviation amounts to -0.14 and the statistical importance is 1.40. The 
product of the economic (-44.96) and the statistical importance yields the relevance of 
the deviation (-62.95). The concept of the relevance of traced deviation enables a 
ranking of variables because all deviations are on the same scale. 
 
 

Further analysis of deviations (shifts)  
The final step in individual farm analysis is the further analysis of the relevant 
deviation in order to find the underlying causes of changes and weak points. The 
computerised detection of weak elements in a production process requires an analysis 
of the relationships between target criterion and other traits (attributes) which are 
usually provided by an information system used on the farm. Data Mining methods are 
useful tools for checking these relationships in large datasets. Data Mining has been 
used extensively in e.g. medical diagnosis, marketing and credit approvals (KAMBER 
et al., 1997), its application in animal production has been limited. DeWAR and 
McQUEEN (1995) tried to calculate the optimal replacement strategy of dairy cows, 
MITCHELL et al. (1996) analysed oestrus events in sows, PIETERSMA et al. (2003) 
investigated dairy lactation curves. KIRCHNER et al. (2004a,b; 2005) applied 
decision tree techniques to simulated and real pig farming datasets.  
Decision tree building is one of the machine learning tools which belong to the Data 
Mining methods. The decision tree-based methods expressed their results in graphical 
presentation of decision rules. A decision tree contains a root node, internal nodes 
representing the attributes, branches characterising the attributes values and leaves 
expressing the binary decision. The examples and analysis presented in this paper use 
the C4.5 algorithm for generating decision trees (QUINLAN, 1986, 1993). Trees were 
calculated with the open source program package WEKA 3-2-3 developed at the 
University of Waikato (New Zealand). 
In Figure 4, the data flow of the decision tree computing is shown (KIRCHNER et al., 
2004b). In phase I, the raw datasets were pre-processed and controlled for plausibility 
and missing values. Phase II describes the construction of the model. The C4.5 
algorithm performs the top-down induction of the decision tree on the basis of a 
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training set. The descending order of the attributes within the tree is calculated by the 
gain-ratio criterion. The procedure to classify the observations (instances) starts with 
the determination of the root attributes, followed by tests on further attributes to build 
the subordinate nodes. Furthermore, the algorithm calculates the split values of the 
attributes represented by the branches. The branches end in the leaves indicating the 
classification of the decision they present (QUINLAN, 1993). 
After generating the tree, an error-based pruning method is used to simplify the tree by 
discarding one or more sub-trees and replacing them with leaves or branches 
(QUINLAN, 1993). In phase III, the generated model is tested with respect to its 
explanatory power with the stratified n-fold cross-validation method. The whole 
dataset is portioned randomly into n subsets and the  C4.5algorithm runs for n times. 
For each time, different training sets and test sets are used and the results are validated. 
The classification accuracy is calculated using the “confusion matrix”. This matrix 
consists of the numbers of true positive (TP), false negative (FN), false positive (FP) 
and true negative (TN) classified instances. The classification performance of a 
decision tree is measured by the sensitivity (SE = TP / (TP + FN)), specificity (SP = 
TN / (TN + FP)) and error rate (ER = FP / ( FP + TP)).  
 

  
Fig. 4: Flow chart for developing a decision tree (KIRCHNER et al., 2004b) (Flow Chart für die Entwicklung 
eines Entscheidungsbaums)  
 
Example 3  
Decision tree technique was used to detect threshold values of management decisions 
relating to sows’ replacement. In order to generate side-effect-free data, three pig 
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porduction herds, each at a different performance level, were created using Monte 
Carlo simulation (Table 2).  
 
Table 2 
Means of selected performance parameter calculated by the simulation program for different herds (Ausgewählte 
Merkmale für unterschiedliche Betriebsleistungsklassen)  
Variable  Level of pig production systems1) 

            Low                    Medium                High 
Number of litters nl   4   4   4 
Piglets born in total per litter nbt 11 12 13 
Piglets stillborn per litter nsb   2   1   1 
Piglets born alive per litter nba   9 11 12 
Piglets weaned per litter nw   8 10 11 
Weaning to oestrus interval (days) woe   8   6   5 
Re-breeding (%)  20 15 10 
1) values are rounded 

 
Each herd contained 500 sows. Selection of a number of sows for culling was based 
either on (1) fertility problems (number of matings, me; weaning to oestrus interval, 
woe), (2) clinical problems (locomotion, diseases, peripartum problems, sudden 
death), (3) low performance (production index), or (4) age (number of litters, nl). The 
accuracy of the classification at the three herd performance levels is illustrated in 
Table 3. 
 
Table 3 
Accuracy  of   the  classification  at  three sow  herd  performance  levels   (Genauigkeit der Klassifizierung für  
unterschiedliche Betriebsleistungsklassen) 
Dataset – 
Performance 

Sensitivity 
% 

Specificity 
% 

Error rate 
% 

Number of 
leaves 

Number of 
Nodes 

Low 72.7 98.8   6.0 10 19 
Medium 60.3 98.0 13.9 14 27 
High 58.3 97.6 15.2 14 27 
Each dataset contains 500 sows 

 
In the results, sensitivity (proportion of correctly detected culled sows of all culled 
sows)  ranged from 58 to 73%, specificity (proportion of detected retained sows of all 
retained sows) was always high (>97%) and error rate (proportion of false positively 
classified sows to all positively classified sows)  varied between 6 and 15%. The 
dataset with the low herd performance level (L) showed the best classification 
parameters, which could be explained by the fact that most sows were culled to 
fertility criteria and high age.  
These culling reasons were very explicit for the C4.5-algorithm. However, the 
selection of sows due to clinical problems was only correlated with parity and it was 
fixed for all three sow herd performance levels. This situation was not identifiable by 
the algorithm and sows were classified in relation to their productivity. The 
explanation for the worse classification of M is that most sows show similar 
performance parameters. A strong difference between the culling reasons was not very 
obvious. The size of the tree increased with the performance level. An example is 
given in Figure 5. Every node is shown in a circle, the branches are labelled with the 
split values of the attributes and the leaves are shown as rectangles. The tree began 
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with the attribute number of matings (me) followed by number of weaned piglets and 
number of litters. 

 
 
Fig. 5: Decision tree showing the detected threshold values of retaining/culling decisions in herd M (medium 
performance, minimum 20 instances per class, number of sows: 500; me: number of mating events; nw = 
number weaned piglets; nl: number of litters) (Entscheidungsbaum für die Ersatzentscheidung in Betrieb M; 
mittleres Leistungsniveau, mindestens 20 Beobachtungen je Subzelle, Anzahl Sauen: 500; me: Anzahl 
Umrauscher; nw = Anzahl der aufgezogenen Ferkel; nl: Wurfnummer)  
 
These results and the results from other simulation scenarios (for details see 
KIRCHNER et al., 2004a, 2004c) demonstrate that the decision tree method is a 
suitable method for detecting relationships and patterns in simulated pig farming 
datasets. 
 
Table 4 
Means  ( x )  and  standard  deviations  (s)  of  reproductive  parameters  for  datasets  A  and  B  (Mittelwerte und  
Standardabweichungen der Fruchtbarkeitsmerkmale für die Datensätze A und B) 
 
Parameter 

 
. 

Dataset A, n= 14,897 
            x                   s 

Dataset B, n= 21,818 
                x                       s 

Number of litters per sow nl   3.7 2.4   3.6 2.2 
Piglets born in total per litter nbt 11.6 3.3 10.5 2.5 
Piglets stillborn per litter nsb   1.1 1.6   0.5 0.7 
Piglets born alive per litter nba 10.5 3.1 10.1 2.3 
Piglets weaned per litter nw   9.5 1.5   9.1 2.2 
Weaning-to-conception interval wco 10.2 - 13.9 - 
Re-breeding rate  10.9 - 13.9 - 
 

Example 4  
In example 4, real datasets from two herds (A and B) were used to generate decision 
trees. The objective was to classify the binary farmer decision regarding replacing or 
not replacing a sow with a gilt. Table 4 summarises the reproductive parameters for 
datsets A and B. 
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The main reasons for culling were lameness and leg weakness (A: 20.4%; B: 30.8%), 
performance (A: 15.8%; B: 17.5%), age (A: 12.6%) and rebreeding (A:11.4%; B: 
9.7%). 
The application of the C4.5 algorithm on the two datasets showed different results 
referring to the quality of classification (Table 5). Dataset B  reached better evaluation 
parameters than A. The sensitivity demonstrated a classification of the culled sows 
with 46.8% and an error rate of  15.3%. A’ (n=7,057) and B’ (n=12,149) are reduced 
datasets, they consisted only of instances which s described unambiguous culling 
reasons for the algorithm (fertility and reproductive problems). Observations with for 
the algorithm blurred culling reasons (e.g. aggressive or stressful sow’s behaviour) 
were excluded. These culling reasons are not handled as an extra attribute and are not 
classified. As expected all classification parameters of the reduced datasets reached 
better results than the original datasets. This was affected by excluding all culling 
decisions which were blurry for the algorithm. 
 
Table 5 
Evaluation parameters for the sow herds A and B (Genauigkeit der Klassifizierung für die Datensätze A und B) 
Dataset1)  
 

Sensitivity 
% 

Specificity 
% 

Error rate 
% 

Number of 
leaves 

Number of 
nodes 

A 40.3 97.4 18.9 14 27 
B 46.8 97.8 15.3 12 23 
A‘2) 74.2 96.7 15.0 7 13 
B‘ 87.5 96.1 14.9 9 17 
1) A = dataset A (n = 14,897); B = dataset B (n = 21.818); 100 instances per class 
2) A‘ (n=7,057), B‘ (n=12,149), reduced datasets with only unambiguous culling reasons 
 
The trees of dataset A and B differ clearly (Fig. 6). The tree of dataset B presents the 
attributes number of litters, piglets weaned and born instead of piglets born alive to 
tree A. The attributes piglets stillborn, weaning to conception interval and number of 
matings although available for the classification, do not appear in any of the generated 
decision trees. The generated trees reflect the different culling strategies adopted by 
the farmer. Regardless of the datasets, the ranking of the attributes in the generated 
trees is reasonable. It is conceivable the farmer reached a decision regarding sow 
replacement following the pattern exhibited by these trees. 
 

 
         Herd A      Herd B 
 
Fig. 6: Decision trees showing the detected threshold values of the farmer replacement strategy of dataset A 
(n=14,897) and B (n=21,818); nl: number of litters; nba: number of piglets born alive; nw: number of piglets 
weaned; nbt: number of piglets born in total) (Entscheidungsbäume für die Ersatzstrategien der Betriebe A und 
B; nl: Wurfnummer, nba: Anzahl der lebend geborenen Ferkel, nw: Anzahl der abgesetzten Ferkel, nbt: Anzahl 
der gesamt geborenen Ferkel)   
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The results of the decision tree technique applied to real pig farming datasets show 
comprehensible decision rules. The more information about the sows is available, e.g. 
information about the fundament after each farrowing, the better the quality of the 
classification. 
 
 

  Conclusion 
Commercial swine farming is characterised by extended herd size, decreasing income 
margins and increasing demands on the farmer’s management skills. Therefore, 
consistent information and decision support is becoming more and more important.  
Computerised individual farm analysis involves three stages, (1) tracing deviations, (2) 
weighting deviations, and (3) further analysis of deviation. 
EWMA control charts were used to trace shifts and deviations. These charts enable a 
graphical presentation of the results and modern computer technology has made it easy 
to implement control charts in on-line production control. The performance of the 
EWMA depends on the smoothing parameter λ and on the width of the control limits 
L. Simulation results showed that λ = 0.2 and L = 1.5 were appropriate choices for the 
given scenarios. But more research is needed (e.g. optimal design, behaviour of 
different types of charts) before the application of control charts can be generally 
recommended for tracing deviations. 
Further analysis of the relevant (out-of-control) deviations should examine the 
underlying causes to improve the farm performance. The decision tree technique was 
checked to classify the farmer’s sow replacement decision. Classifying other 
reproductive or economically important traits such as number of weaned piglets per 
sow per year is also conceivable. Having the graphical trees compared by an expert 
enables the farmer to detect weak elements of the production. An important issue for 
the application of the decision tree is data reliability. The more information is 
available, the better the quality of the classification and the decision rules. 
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