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Summary 
It is shown that the heterozygosity between two populations defined as the expected proportion of heterozygotes 
in their cross can be used as a complement to measures of genetic distance. This new measure has favourable 
mathematical properties (fülfils the triangulär inequality) and can be well interpreted from the biological point of 
view. Its main importance will be in comparing (potential) crosses amongst each other. 
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Zusammenfassung 
Titel der Arbeit: Heterozygotiegrad zwischen Populationen - eine mögliche Alternative zu genetischen 
Abstandsmaßen 
Es wird gezeigt, dass der Heterozygotiegrad zwischen zwei Populationen, der definiert ist als der erwartete 
Anteil von Heterozygoten in ihrer Kreuzung, eine mögliche Alternative für genetische Abstandsmaße ist. Dieses 
neue Maß hat günstige mathematische Eigenschaften (genügt der Dreiecksungleichung) und kann unter 
biologischem Gesichtspunkt gut interpretiert werden. Seine Bedeutung dürfte hauptsächlich im gegenseitigen 
Vergleich (potentieller) Kreuzungskombinationen liegen. 
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Introduction 
Several measures were proposed for calculating the genetic distance between two 
populations (GREGORIUS 1974, 1984; NEI, 1972; PREVOSTI et al, 1975; 
ROGERS, 1972). These measures were derived from different approaches. NEI's 
Standard genetic distance (NEI, 1972) is based on a hypothesis of the evolution 
process. He assumes a linear relationship between the genetic distance and the time in 
evolution the two genotypes were separated from each other. GREGORIUS (1974, 
1984) stated a set of conditions to which a distance measure must comply and derived 
his distance measure from this basis. The same distance measure was used by 
PREVOSTI et al. (1975). From the animal breeders' point of view, a measure between 
two populations related to the expected proportion of heterozygotic individuals in the 
resulting cross, is appealing. In the following text it will be shown that the 
heterozygosity between populations is such a measure. 
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Definition ofthe Heterozygosity Between Populations 

Letp.„, andpn, be the frequency of they'th allele at the /th locus in populations X and Y, 
respectively. Then, when crossing populations X and Y by mating at random, the 
expected frequency of homozygotes at locus i, gm, is: 

n, 

SxYi = Y.PxijPYij 

where n, is the number of alleles at locus /'. 
The expected frequency of heterozygotes at locus i in the cross, hm, is then: 

tu 

hxv, = I - gxn = 1 - zZPxijPnj [i] 
ft 

This quantity is formally similar to the heterozygosity in a population (for X=Y). We 
call it "heterozygosity between populations at locus i" therefore. This measure has 
similar properties as a distance measure. It can be well interpreted from the biological 
point of view and has favourable properties from the mathematical point of view. The 
heterozygosity between populations at locus /' can be estimated by replacing the allele 
frequencies in [1] by its estimates. 
The variance of the heterozygosity between populations is (NEI and 
ROYCHOUDHURY, 1974): 

i (^ Y ^ 
var(hxn) = W-mx-my) zZPxijPnj + (™x-l)2jrmprv 

mxtm I \j=i J j=i 
«i nt 

+ (mr-l)zZPxijPnA HWrA 
H J=I J 

with mx and mr being the number of individuals from populations X and Y, 
respectively. 
For a given set of loci, an average heterozygosity between populations (H„) can be 
defined. Its estimate can be calculated simply as arithmetic mean of the estimates of 
the heterozygosities at the individual loci: 

HXY = ^hxn \/r 
\i-t ) 

with the variance 

var(HxY) = ^(hxn - Hxv)2/[r(r - 1)] 
i=i 

where r is number of loci in this set. 

Properties of the Heterozygosity Between Populations 
First consider the special case of two alleles at locus /'. Putting for simplicity p =pi„ 
and q =pr,,, the equation for the heterozygosity between population X and Y reduces to 

hx» = P + <7 - 2pq 
F o r p - constant, hm is a linear function of q only. For/? = 0.5, hm is independent of q 
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and takes the value 0.5. hm takes its minimal value of zero for/? = q = 0 and/? = q = \. 
The maximal value of 1 is reached for the combination /? = 0 and q = 1 or vice versa 
(/? = 1 and q = 0). 
In the general case of w, alleles at the /th locus, «,- being any positive integer, the lower 
bound of hm is zero and its upper bound is unity. The lower bound is reached if and 
only if in both populations the same allele occurs with the frequency one (i.e. all other 
alleles have the frequency zero in both populations). The upper bound is reached if and 
only if both populations do not have any allele in common. 
The measure hm fulftls the triangulär inequality: 

hxzi — hxYi + hyzt > 
where X, Y and Z are three populations and the h's are the heterozygosities referring to 
the appropriate pairs of populations. The proof is given in the Appendix. 
If all allele frequencies at locus / in the population X are equal, i.e. /?.,•„ = \ln, for all j , 
then equation [1] simplifies to 

1 "' / 
hxn = 1 iZPrij^1 

«, /=/ m 
as the sum is unity. In that case hm is independent of the allele frequencies in the 
population Y. 
Another interesting case is when in population X only one allele, sayy'*, is present, i.e. 
/?.„,. = 1. Then equation [1] reduces to 

hxn - I - pw 

That means, h», depends only on the frequency of the same allele in population Y and 
is independent on the remaining allele frequencies in Y. For completeness it should be 
added that h„, = h,x„ so that X and Y can be exchanged without changing the result. 

Discussion 
GREGORIUS (1974) stated four conditions for a measure to be a distance measure: (i) 
it takes only nonnegative values, (ii) it is Symmetrie (the distance between A and B is 
the same as the distance between B and A), (iii) it takes the value zero if and only if 
both populations are identical, (iv) it fulftls the triangulär inequality. The 
heterozygosity between populations meets conditions (i), (ii) and (iv), but not (iii). 
Therefore this measure has some similarity to a distance measure, but is no distance 
measure in the sense of the above defmition. The explanation for the divergence from 
a distance measure with respect to condition (iii) is given below. 
To illustrate the differences between several measures of genetic distance and the 
heterozygosity between populations, the Table gives numeric values for some basic 
situations. Only one locus is considered. All animals in the hypothetic populations X 
and Y are assumed to be identical or both populations are assumed to consist of one 
animal each. Capital letters A, B, C and D designate different alleles. The numeric 
values ofthe new measure given by equation [1] are most similar to the values of 
GREGORIUS' distance (GREGORIUS, 1974, 1984). Similarly as in NEI's Standard 
genetic distance (NEI, 1972), the situations AA AB and AB BC are discriminated 
against by the new measure. 
As already stated above (divergence from condition (iii) ofa distance measure), the 
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heterozygosity between populations may differ from zero, though the genotype and the 
allele frequencies in both populations will be equal (Situation AB AB in the Table). At 
first glance, it seems to be illogical that a value greater than zero is calculated although 
the two populations X and Y are identical from a genetic point of view. But when 
comparing X and Y on the basis of alleles and not genotypes, half ofthe comparisons 
will yield equal alleles (Ax - AY, Bx - Bv, read Ax as "allele A from population X" etc.) 
and half of the comparisons unequal alleles (Ax - BY, Av - Bx). This is the way the new 
measure is defined and this is the basic difference from the distance measures. The 
heterozygosity between populations is defined in respect to what will happen when the 
populations are crossed amongst each other and contains implicitly a dynamic aspect. 

Table 

Genotypes 
X Y 

AAAA 
AA AB 
AABB 
AB AB 
AABC 
ABBC 
AB CD 

GREGORIUS NEI 1972 NEI 1972 ROGERS 
1984 std.+max. min. 1972 

0 0 0 
0.50 0.35 0.25 

1 CO 1 

0 0 0 
1 co 0.75 

0.50 0.69 0.25 
1 oo 0.50 

0 
0.50 

1 
0 

0.87 
0.50 
0.71 

Hetero­
zygosity 

0 
0.50 

1 
0.50 

1 
0.75 

1 

NEI's minimum genetic distance (NEI, 1972) is defined as 

1 A 2 1 f \^ o "' 1 "' 
dmm = -L(Pxij - Py0) = ~Z ZZPXO + ZZPIIJ - ZZPXIJPYIJ 

* J-l z\j=i M ) H 

When assuming Hardy-Weinberg equilibrium in the populations X and Y this 
defmition can be rewritten to 

dmm ~ hxYi - ~(hxi + hn) 

where hx, and h„ are the heterozygosities within the populations X and Y, respectively, 
calculated under the above assumption. NEI's minimum genetic distance can therefore 
be interpreted as an increase in heterozygosity when crossing populations X and Y 
which are in Hardy-Weinberg equilibrium. This measure may be useful when 
comparing crosses with purebred populations, but for comparing crosses among each 
other the uncorrected heterozygosity between populations as defined in equation [1] 
should be preferred. ROGERS' distance (ROGERS, 1972) is the square root from 
NEI's minimum genetic distance and therefore related to the distance measure [1] in a 
similar way. 

As in studies with microsatellites all alleles from the given set of loci under 
consideration can be identified in general, the estimates of heterozygosities within the 
populations can be calculated by counting the number of heterozygotes and relating it 
to the overall number of animals. Therefore NEI's minimal genetic distance could be 
modified in such a way that hxi and h„ are replaced by the heterozygosities calculated in 
the more direct way by counting heterozygotes and not from allele frequencies 
assuming Hardy-Weinberg equilibrium. This might yield more precise estimates ofthe 
increase ofthe proportion of heterozygotes in potential crosses, but on the other hand, 
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could yield negative estimates of genetic distances, when the allele distribution in 
populations X and/or Y is far from Hardy-Weinberg equilibrium. 
The heterozygosity between populations should be mainly used when the degree of 
heterozygosity of potential crosses is of interest. For other purposes such as clustering 
of genotypes with no respect to their future use in crossbreeding programs the absolute 
genetic distance of GREGORIUS (1984) may be more suitable and for investigations 
related to the evolutionary process NEI's Standard genetic distance (NEI, 1972) will be 
the method of choice. NEI's minimal genetic distance (NEI, 1972) and ROGERS1 

distance (ROGERS, 1972) have the unfavourable property that, in certain situations, 
they do not give maximal values, even though both populations do not share common 
alleles (combination AB CD in Table 1). They should therefore be used with care. 
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Appendix: Proof ofthe Triangulär Inequality 
Consider any locus / and let n be the number of alleles. For simplicity, /?,, q, and r, is 
written instead of /?.„„ pri, and pm for the frequency of the/'th allele (/= 1,2, ..., n) in 
populations X, Y and Z, respectively. Similarly, i is omitted in the index of the 
heterozygosities at locus i. 
The heterozygosities can altematively be written in the following form: 

hxr = zZqj(l-Pj), hrz = zZnO-qj), hrz = zlrjO-Pj) • [AI] 
j-i j=i H 
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It is to be shown that 
hxz - hxY + hyz 

or 
Ah = hxy + hyz - hxz > 0 . [A2] 

Inserting [AI] to [A2] it is obtained: 

A* = T[ljO-Pj) + rjd-qj) - rj(l-Pjj\ = £*hj 

with 
Ahj = q/l-py + rj(l-qj) - rj(l-Pj) 

= q/l-Pj) + rj(Pj-qj) 

where 0 <p„ qn r,< 1. 
For showing that A/z > 0, it is sufficient to show that Ahj > 0 for any;'. Consider first 
the case that/?, > qjs rj taking any value. Then 

Ahj = q/l-py + rj(Pj-qj) >0 . 

Assume now that/?,- < qj and rj > qj. Then 
A/*y = q/l-Pj) + rj(Pj-qj) 

= q/l-rj) + Pj(rj-qj) >0 . 

The last case to consider is pj < qj and r> < qj. It is: 

Ahj = q/J-pj) + r/J-qj) - rj(l-Pj) 

= (qrr})(l- Pj) + rj(l-qj) > 0 . 
Herewith it has been shown that the triangulär inequality is valid for any allele 
frequencies. Because of the additivity of the heterozygosity between populations in 
respect to the loci the triangulär inequality holds not only for the heterozygosity at a 
given locus, but for the average heterozygosity as well. 
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